Skip to main content

Smaller & Faster Single-File Vector Search Engine from Unum

Project description

USearch

Smaller & Faster Single-File
Similarity Search Engine for Vectors & 🔜 Texts


Discord     LinkedIn     Twitter     Blog     GitHub

Spatial • Binary • Probabilistic • User-Defined Metrics
C++ 11Python 3JavaScriptJavaRustC 99Objective-CSwiftC#GoLangWolfram
Linux • MacOS • Windows • iOS • WebAssembly • SQLite3


Technical Insights and related articles:

Comparison with FAISS

FAISS is a widely recognized standard for high-performance vector search engines. USearch and FAISS both employ the same HNSW algorithm, but they differ significantly in their design principles. USearch is compact and broadly compatible without sacrificing performance, primarily focusing on user-defined metrics and fewer dependencies.

FAISS USearch Improvement
Indexing time ⁰
100 Million 96d f32, f16, i8 vectors 2.6 · 2.6 · 2.6 h 0.3 · 0.2 · 0.2 h 9.6 · 10.4 · 10.7 x
100 Million 1536d f32, f16, i8 vectors 5.0 · 4.1 · 3.8 h 2.1 · 1.1 · 0.8 h 2.3 · 3.6 · 4.4 x
Codebase length ¹ 84 K SLOC 3 K SLOC maintainable
Supported metrics ² 9 fixed metrics any metric extendible
Supported languages ³ C++, Python 10 languages portable
Supported ID types ⁴ 32-bit, 64-bit 32-bit, 40-bit, 64-bit efficient
Filtering ⁵ ban-lists any predicates composable
Required dependencies ⁶ BLAS, OpenMP - light-weight
Bindings ⁷ SWIG Native low-latency
Python binding size ⁸ ~ 10 MB < 1 MB deployable

Tested on Intel Sapphire Rapids, with the simplest inner-product distance, equivalent recall, and memory consumption while also providing far superior search speed. ¹ A shorter codebase of usearch/ over faiss/ makes the project easier to maintain and audit. ² User-defined metrics allow you to customize your search for various applications, from GIS to creating custom metrics for composite embeddings from multiple AI models or hybrid full-text and semantic search. ³ With USearch, you can reuse the same preconstructed index in various programming languages. ⁴ The 40-bit integer allows you to store 4B+ vectors without allocating 8 bytes for every neighbor reference in the proximity graph. ⁵ With USearch the index can be combined with arbitrary external containers, like Bloom filters or third-party databases, to filter out irrelevant keys during index traversal. ⁶ Lack of obligatory dependencies makes USearch much more portable. ⁷ Native bindings introduce lower call latencies than more straightforward approaches. ⁸ Lighter bindings make downloads and deployments faster.

Base functionality is identical to FAISS, and the interface must be familiar if you have ever investigated Approximate Nearest Neighbors search:

# pip install numpy usearch

import numpy as np
from usearch.index import Index

index = Index(ndim=3)

vector = np.array([0.2, 0.6, 0.4])
index.add(42, vector)

matches = index.search(vector, 10)

assert matches[0].key == 42
assert matches[0].distance <= 0.001
assert np.allclose(index[42], vector, atol=0.1) # Ensure high tolerance in mixed-precision comparisons

More settings are always available, and the API is designed to be as flexible as possible. The default storage/quantization level is hardware-dependant for efficiency, but f16 is recommended for most modern CPUs.

index = Index(
    ndim=3, # Define the number of dimensions in input vectors
    metric='cos', # Choose 'l2sq', 'ip', 'haversine' or other metric, default = 'cos'
    dtype='f16', # Store as 'f64', 'f32', 'f16', 'i8', 'b1'..., default = None
    connectivity=16, # Optional: Limit number of neighbors per graph node
    expansion_add=128, # Optional: Control the recall of indexing
    expansion_search=64, # Optional: Control the quality of the search
    multi=False, # Optional: Allow multiple vectors per key, default = False
)

Serialization & Serving Index from Disk

USearch supports multiple forms of serialization:

  • Into a file defined with a path.
  • Into a stream defined with a callback, serializing or reconstructing incrementally.
  • Into a buffer of fixed length or a memory-mapped file that supports random access.

The latter allows you to serve indexes from external memory, enabling you to optimize your server choices for indexing speed and serving costs. This can result in 20x cost reduction on AWS and other public clouds.

index.save("index.usearch")

loaded_copy = index.load("index.usearch")
view = Index.restore("index.usearch", view=True)

other_view = Index(ndim=..., metric=...)
other_view.view("index.usearch")

Exact vs. Approximate Search

Approximate search methods, such as HNSW, are predominantly used when an exact brute-force search becomes too resource-intensive. This typically occurs when you have millions of entries in a collection. For smaller collections, we offer a more direct approach with the search method.

from usearch.index import search, MetricKind, Matches, BatchMatches
import numpy as np

# Generate 10'000 random vectors with 1024 dimensions
vectors = np.random.rand(10_000, 1024).astype(np.float32)
vector = np.random.rand(1024).astype(np.float32)

one_in_many: Matches = search(vectors, vector, 50, MetricKind.L2sq, exact=True)
many_in_many: BatchMatches = search(vectors, vectors, 50, MetricKind.L2sq, exact=True)

If you pass the exact=True argument, the system bypasses indexing altogether and performs a brute-force search through the entire dataset using SIMD-optimized similarity metrics from SimSIMD. When compared to FAISS's IndexFlatL2 in Google Colab, USearch may offer up to a 20x performance improvement:

  • faiss.IndexFlatL2: 55.3 ms.
  • usearch.index.search: 2.54 ms.

User-Defined Metrics

While most vector search packages concentrate on just two metrics, "Inner Product distance" and "Euclidean distance", USearch allows arbitrary user-defined metrics. This flexibility allows you to customize your search for various applications, from computing geospatial coordinates with the rare Haversine distance to creating custom metrics for composite embeddings from multiple AI models, like joint image-text embeddings. You can use Numba, Cppyy, or PeachPy to define your custom metric even in Python:

from numba import cfunc, types, carray
from usearch.index import Index, MetricKind, MetricSignature, CompiledMetric

@cfunc(types.float32(types.CPointer(types.float32), types.CPointer(types.float32)))
def python_inner_product(a, b):
    a_array = carray(a, ndim)
    b_array = carray(b, ndim)
    c = 0.0
    for i in range(ndim):
        c += a_array[i] * b_array[i]
    return 1 - c

metric = CompiledMetric(pointer=python_inner_product.address, kind=MetricKind.IP, signature=MetricSignature.ArrayArray)
index = Index(ndim=ndim, metric=metric, dtype=np.float32)

Similar effect is even easier to achieve in C, C++, and Rust interfaces. Moreover, unlike older approaches indexing high-dimensional spaces, like KD-Trees and Locality Sensitive Hashing, HNSW doesn't require vectors to be identical in length. They only have to be comparable. So you can apply it in obscure applications, like searching for similar sets or fuzzy text matching, using GZip compression-ratio as a distance function.

Filtering and Predicate Functions

Sometimes you may want to cross-reference search-results against some external database or filter them based on some criteria. In most engines, you'd have to manually perform paging requests, successively filtering the results. In USearch you can simply pass a predicate function to the search method, which will be applied directly during graph traversal. In Rust that would look like this:

let is_odd = |key: Key| key % 2 == 1;
let query = vec![0.2, 0.1, 0.2, 0.1, 0.3];
let results = index.filtered_search(&query, 10, is_odd).unwrap();
assert!(
    results.keys.iter().all(|&key| key % 2 == 1),
    "All keys must be odd"
);

Memory Efficiency, Downcasting, and Quantization

Training a quantization model and dimension-reduction is a common approach to accelerate vector search. Those, however, are only sometimes reliable, can significantly affect the statistical properties of your data, and require regular adjustments if your distribution shifts. Instead, we have focused on high-precision arithmetic over low-precision downcasted vectors. The same index, and add and search operations will automatically down-cast or up-cast between f64_t, f32_t, f16_t, i8_t, and single-bit representations. You can use the following command to check, if hardware acceleration is enabled:

$ python -c 'from usearch.index import Index; print(Index(ndim=768, metric="cos", dtype="f16").hardware_acceleration)'
> sapphire
$ python -c 'from usearch.index import Index; print(Index(ndim=166, metric="tanimoto").hardware_acceleration)'
> ice

Using smaller numeric types will save you RAM needed to store the vectors, but you can also compress the neighbors lists forming our proximity graphs. By default, 32-bit uint32_t is used to enumerate those, which is not enough if you need to address over 4 Billion entries. For such cases we provide a custom uint40_t type, that will still be 37.5% more space-efficient than the commonly used 8-byte integers, and will scale up to 1 Trillion entries.

USearch uint40_t support

Indexes for Multi-Index Lookups

For larger workloads targeting billions or even trillions of vectors, parallel multi-index lookups become invaluable. Instead of constructing one extensive index, you can build multiple smaller ones and view them together.

from usearch.index import Indexes

multi_index = Indexes(
    indexes: Iterable[usearch.index.Index] = [...],
    paths: Iterable[os.PathLike] = [...],
    view: bool = False,
    threads: int = 0,
)
multi_index.search(...)

Clustering

Once the index is constructed, USearch can perform K-Nearest Neighbors Clustering much faster than standalone clustering libraries, like SciPy, UMap, and tSNE. Same for dimensionality reduction with PCA. Essentially, the Index itself can be seen as a clustering, allowing iterative deepening.

clustering = index.cluster(
    min_count=10, # Optional
    max_count=15, # Optional
    threads=..., # Optional
)

# Get the clusters and their sizes
centroid_keys, sizes = clustering.centroids_popularity

# Use Matplotlib to draw a histogram
clustering.plot_centroids_popularity()

# Export a NetworkX graph of the clusters
g = clustering.network

# Get members of a specific cluster
first_members = clustering.members_of(centroid_keys[0])

# Deepen into that cluster, splitting it into more parts, all the same arguments supported
sub_clustering = clustering.subcluster(min_count=..., max_count=...)

The resulting clustering isn't identical to K-Means or other conventional approaches but serves the same purpose. Alternatively, using Scikit-Learn on a 1 Million point dataset, one may expect queries to take anywhere from minutes to hours, depending on the number of clusters you want to highlight. For 50'000 clusters, the performance difference between USearch and conventional clustering methods may easily reach 100x.

Joins, One-to-One, One-to-Many, and Many-to-Many Mappings

One of the big questions these days is how AI will change the world of databases and data management. Most databases are still struggling to implement high-quality fuzzy search, and the only kind of joins they know are deterministic. A join differs from searching for every entry, requiring a one-to-one mapping banning collisions among separate search results.

Exact Search Fuzzy Search Semantic Search ?
Exact Join Fuzzy Join ? Semantic Join ??

Using USearch, one can implement sub-quadratic complexity approximate, fuzzy, and semantic joins. This can be useful in any fuzzy-matching tasks common to Database Management Software.

men = Index(...)
women = Index(...)
pairs: dict = men.join(women, max_proposals=0, exact=False)

Read more in the post: Combinatorial Stable Marriages for Semantic Search 💍

Functionality

By now, the core functionality is supported across all bindings. Broader functionality is ported per request. In some cases, like Batch operations, feature parity is meaningless, as the host language has full multi-threading capabilities and the USearch index structure is concurrent by design, so the users can implement batching/scheduling/load-balancing in the most optimal way for their applications.

C++ 11 Python 3 C 99 Java JavaScript Rust GoLang Swift
Add, search, remove
Save, load, view
User-defined metrics
Batch operations
Filter predicates
Joins
Variable-length vectors
4B+ capacities

Application Examples

USearch + UForm + UCall = Multimodal Semantic Search

AI has a growing number of applications, but one of the coolest classic ideas is to use it for Semantic Search. One can take an encoder model, like the multi-modal UForm, and a web-programming framework, like UCall, and build a text-to-image search platform in just 20 lines of Python.

from ucall import Server
from uform import get_model, Modality
from usearch.index import Index

import numpy as np
import PIL as pil

processors, models = get_model('unum-cloud/uform3-image-text-english-small')
model_text = models[Modality.TEXT_ENCODER]
model_image = models[Modality.IMAGE_ENCODER]
processor_text = processors[Modality.TEXT_ENCODER]
processor_image = processors[Modality.IMAGE_ENCODER]

server = Server()
index = Index(ndim=256)

@server
def add(key: int, photo: pil.Image.Image):
    image = processor_image(photo)
    vector = model_image(image)
    index.add(key, vector.flatten(), copy=True)

@server
def search(query: str) -> np.ndarray:
    tokens = processor_text(query)
    vector = model_text(tokens)
    matches = index.search(vector.flatten(), 3)
    return matches.keys

server.run()

Similar experiences can also be imlemented in other languages and on the client side, removing the network latency. For Swift and iOS, check out the ashvardanian/SwiftSemanticSearch repository.

SwiftSemanticSearch demo Dog SwiftSemanticSearch demo with Flowers

A more complete demo with Streamlit is available on GitHub. We have pre-processed some commonly used datasets, cleaned the images, produced the vectors, and pre-built the index.

Dataset Modalities Images Download
Unsplash Images & Descriptions 25 K HuggingFace / Unum
Conceptual Captions Images & Descriptions 3 M HuggingFace / Unum
Arxiv Titles & Abstracts 2 M HuggingFace / Unum

USearch + RDKit = Molecular Search

Comparing molecule graphs and searching for similar structures is expensive and slow. It can be seen as a special case of the NP-Complete Subgraph Isomorphism problem. Luckily, domain-specific approximate methods exist. The one commonly used in Chemistry is to generate structures from SMILES and later hash them into binary fingerprints. The latter are searchable with binary similarity metrics, like the Tanimoto coefficient. Below is an example using the RDKit package.

from usearch.index import Index, MetricKind
from rdkit import Chem
from rdkit.Chem import AllChem

import numpy as np

molecules = [Chem.MolFromSmiles('CCOC'), Chem.MolFromSmiles('CCO')]
encoder = AllChem.GetRDKitFPGenerator()

fingerprints = np.vstack([encoder.GetFingerprint(x) for x in molecules])
fingerprints = np.packbits(fingerprints, axis=1)

index = Index(ndim=2048, metric=MetricKind.Tanimoto)
keys = np.arange(len(molecules))

index.add(keys, fingerprints)
matches = index.search(fingerprints, 10)

That method was used to build the "USearch Molecules", one of the largest Chem-Informatics datasets, containing 7 billion small molecules and 28 billion fingerprints.

USearch + POI Coordinates = GIS Applications

Similar to Vector and Molecule search, USearch can be used for Geospatial Information Systems. The Haversine distance is available out of the box, but you can also define more complex relationships, like the Vincenty formula, that accounts for the Earth's oblateness.

from numba import cfunc, types, carray
import math

# Define the dimension as 2 for latitude and longitude
ndim = 2

# Signature for the custom metric
signature = types.float32(
    types.CPointer(types.float32),
    types.CPointer(types.float32))

# WGS-84 ellipsoid parameters
a = 6378137.0  # major axis in meters
f = 1 / 298.257223563  # flattening
b = (1 - f) * a  # minor axis

def vincenty_distance(a_ptr, b_ptr):
    a_array = carray(a_ptr, ndim)
    b_array = carray(b_ptr, ndim)
    lat1, lon1, lat2, lon2 = a_array[0], a_array[1], b_array[0], b_array[1]
    L, U1, U2 = lon2 - lon1, math.atan((1 - f) * math.tan(lat1)), math.atan((1 - f) * math.tan(lat2))
    sinU1, cosU1, sinU2, cosU2 = math.sin(U1), math.cos(U1), math.sin(U2), math.cos(U2)
    lambda_, iterLimit = L, 100
    while iterLimit > 0:
        iterLimit -= 1
        sinLambda, cosLambda = math.sin(lambda_), math.cos(lambda_)
        sinSigma = math.sqrt((cosU2 * sinLambda) ** 2 + (cosU1 * sinU2 - sinU1 * cosU2 * cosLambda) ** 2)
        if sinSigma == 0: return 0.0  # Co-incident points
        cosSigma, sigma = sinU1 * sinU2 + cosU1 * cosU2 * cosLambda, math.atan2(sinSigma, cosSigma)
        sinAlpha, cos2Alpha = cosU1 * cosU2 * sinLambda / sinSigma, 1 - (cosU1 * cosU2 * sinLambda / sinSigma) ** 2
        cos2SigmaM = cosSigma - 2 * sinU1 * sinU2 / cos2Alpha if not math.isnan(cosSigma - 2 * sinU1 * sinU2 / cos2Alpha) else 0  # Equatorial line
        C = f / 16 * cos2Alpha * (4 + f * (4 - 3 * cos2Alpha))
        lambda_, lambdaP = L + (1 - C) * f * (sinAlpha * (sigma + C * sinSigma * (cos2SigmaM + C * cosSigma * (-1 + 2 * cos2SigmaM ** 2)))), lambda_
        if abs(lambda_ - lambdaP) <= 1e-12: break
    if iterLimit == 0: return float('nan')  # formula failed to converge
    u2 = cos2Alpha * (a ** 2 - b ** 2) / (b ** 2)
    A = 1 + u2 / 16384 * (4096 + u2 * (-768 + u2 * (320 - 175 * u2)))
    B = u2 / 1024 * (256 + u2 * (-128 + u2 * (74 - 47 * u2)))
    deltaSigma = B * sinSigma * (cos2SigmaM + B / 4 * (cosSigma * (-1 + 2 * cos2SigmaM ** 2) - B / 6 * cos2SigmaM * (-3 + 4 * sinSigma ** 2) * (-3 + 4 * cos2SigmaM ** 2)))
    s = b * A * (sigma - deltaSigma)
    return s / 1000.0  # Distance in kilometers

# Example usage:
index = Index(ndim=ndim, metric=CompiledMetric(
    pointer=vincenty_distance.address,
    kind=MetricKind.Haversine,
    signature=MetricSignature.ArrayArray,
))

Integrations & Users

Citations

@software{Vardanian_USearch_2023,
doi = {10.5281/zenodo.7949416},
author = {Vardanian, Ash},
title = {{USearch by Unum Cloud}},
url = {https://github.com/unum-cloud/usearch},
version = {2.13.0},
year = {2023},
month = oct,
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

usearch-2.13.0-cp312-cp312-win_arm64.whl (262.5 kB view details)

Uploaded CPython 3.12 Windows ARM64

usearch-2.13.0-cp312-cp312-win_amd64.whl (280.1 kB view details)

Uploaded CPython 3.12 Windows x86-64

usearch-2.13.0-cp312-cp312-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

usearch-2.13.0-cp312-cp312-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

usearch-2.13.0-cp312-cp312-manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

usearch-2.13.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.13.0-cp312-cp312-macosx_11_0_arm64.whl (362.8 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

usearch-2.13.0-cp312-cp312-macosx_10_9_x86_64.whl (374.7 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

usearch-2.13.0-cp312-cp312-macosx_10_9_universal2.whl (696.5 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.13.0-cp311-cp311-win_arm64.whl (261.3 kB view details)

Uploaded CPython 3.11 Windows ARM64

usearch-2.13.0-cp311-cp311-win_amd64.whl (278.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

usearch-2.13.0-cp311-cp311-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

usearch-2.13.0-cp311-cp311-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

usearch-2.13.0-cp311-cp311-manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

usearch-2.13.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.13.0-cp311-cp311-macosx_11_0_arm64.whl (361.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

usearch-2.13.0-cp311-cp311-macosx_10_9_x86_64.whl (371.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

usearch-2.13.0-cp311-cp311-macosx_10_9_universal2.whl (692.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.13.0-cp310-cp310-win_arm64.whl (260.3 kB view details)

Uploaded CPython 3.10 Windows ARM64

usearch-2.13.0-cp310-cp310-win_amd64.whl (277.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

usearch-2.13.0-cp310-cp310-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

usearch-2.13.0-cp310-cp310-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

usearch-2.13.0-cp310-cp310-manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

usearch-2.13.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.13.0-cp310-cp310-macosx_11_0_arm64.whl (360.1 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

usearch-2.13.0-cp310-cp310-macosx_10_9_x86_64.whl (369.8 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

usearch-2.13.0-cp310-cp310-macosx_10_9_universal2.whl (690.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.13.0-cp39-cp39-win_arm64.whl (261.3 kB view details)

Uploaded CPython 3.9 Windows ARM64

usearch-2.13.0-cp39-cp39-win_amd64.whl (273.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

usearch-2.13.0-cp39-cp39-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

usearch-2.13.0-cp39-cp39-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

usearch-2.13.0-cp39-cp39-manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

usearch-2.13.0-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.13.0-cp39-cp39-macosx_11_0_arm64.whl (360.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

usearch-2.13.0-cp39-cp39-macosx_10_9_x86_64.whl (370.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

usearch-2.13.0-cp39-cp39-macosx_10_9_universal2.whl (690.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.13.0-cp38-cp38-win_amd64.whl (277.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

usearch-2.13.0-cp38-cp38-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

usearch-2.13.0-cp38-cp38-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

usearch-2.13.0-cp38-cp38-manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

usearch-2.13.0-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.13.0-cp38-cp38-macosx_11_0_arm64.whl (359.8 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

usearch-2.13.0-cp38-cp38-macosx_10_9_x86_64.whl (369.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

usearch-2.13.0-cp38-cp38-macosx_10_9_universal2.whl (689.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.13.0-cp37-cp37m-win_amd64.whl (278.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

usearch-2.13.0-cp37-cp37m-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

usearch-2.13.0-cp37-cp37m-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ARM64

usearch-2.13.0-cp37-cp37m-manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

usearch-2.13.0-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.13.0-cp37-cp37m-macosx_10_9_x86_64.whl (366.9 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file usearch-2.13.0-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: usearch-2.13.0-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 262.5 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for usearch-2.13.0-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 7bc5b5362044c4b8248f657b385cfc3d9e440f98cf21fc42355821a62f36982d
MD5 ffddda5d32e6edd1cfb521113b0234b7
BLAKE2b-256 bd4832c5b263ae06cb4da0ec923c832d5277898397e19cf7a7c0f3469e8d20d2

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: usearch-2.13.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 280.1 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for usearch-2.13.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 822f7826b1f737f5a2f820911721a1c2bd493575597ba0577788281ffef57d0a
MD5 78dca54a9353d5462b898d5fd0d68f8d
BLAKE2b-256 4f4e49cf8403bd68606da9792d0a1bb8937ff41060f4a3ab4211b489fe612d7f

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 27390b0e1f46cf95b878eccbafe91f94ab3db8c895f2dccb687b67161b7d4c83
MD5 104ef45122ca37eeb831fc616f0a9b05
BLAKE2b-256 e0d8dd1bcacec1524d57c3f4910cd17e1d4916be4848d1c4ced690bac5a09341

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 569f5cd203092fd8db8ea7a5498eaeed20194a1c133d41c68bd0fd63974a11a0
MD5 a1e9ac1a8cfce14424268e4efc5cc602
BLAKE2b-256 eddc52386e46d237644964d53fe682925943b2899a8a7fa7f4a55e712a5ed25b

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 fe335e1e2a44905031d41284fc9e9cf9a1938d6c7c12edca3670c364c840b243
MD5 9b48427139277e6ce583747eb76c41fd
BLAKE2b-256 1a0976097bb43da6857a205c0660c190507f0443ebb145d01a4c47fe73b4770f

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 afa816280b64240c99d7ef272755a8a37d5997ec55f3d6befca4a73bb998d1fa
MD5 af998f769e7b3f3afb46f2c310b0add5
BLAKE2b-256 9050d156353b0a18cbf83727cfbe9054e523bafe92f7ca5ba6fc07eb082ba08d

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c66368a957d06a6536bd4f36b2ee29f9ebe5e62a012963125a7131c149ec1ec4
MD5 457841130be5be8aae68644e2e0a7468
BLAKE2b-256 34af082cd0d0b1074201bf00f80514d2f360330bc332426c9345a34eb5f0523c

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 56007f9ac9af283ba57cbb862944ccb31b6e98b4869ad70d6626fc071afe72e6
MD5 414e0661464794a0dae343450ad58d9b
BLAKE2b-256 b7ff261db34e2788210c4edc138be33393e55e5ff090629c72043dbd814f3dda

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b6bde8462370e03de3d55ca104f2b6a0acbfe49ac82bdd5537886f9f00de1982
MD5 014b064acf0ed40b708c443ad360b603
BLAKE2b-256 ed8582b9a4870c4a7ad8bb5deacdeba4c892a5d6534544634b2a7ff107d418e9

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: usearch-2.13.0-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 261.3 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for usearch-2.13.0-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 cb5f8a89738b3f73195b9d70a1772e69108d6f10e67d48d37a54d1b464e8bd7e
MD5 59575fd66c380e1c65a29f58c7695324
BLAKE2b-256 99c2a58da2ccc8ac11618b8f332371317e12efebcdc256216f90c620c7de80ee

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: usearch-2.13.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 278.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for usearch-2.13.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 76f6b1760785921bb0cab2a71a9aebab9a5740750c0c99f6a8636ed32feb59a1
MD5 59a16ee08aafba7e63ec80e58b1ccdc6
BLAKE2b-256 94eb190f6abee09180cceaac1c858295db135256c72d1a08f12277004bac73c8

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 14398e89d1481aebd79b07c64c06cc5d65b3975cc4bccc394f4873428a00b0a9
MD5 4ae4f78ba0d9ab7613e2372e4b56e780
BLAKE2b-256 3a99224a2fe9adc55991b949e8d9126e62e5314903c1374cce7b4e6e7b15684f

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 3081a6cefcb13ac23f58bedb72faa85e9e03a9bb4b7da8d7d06517748d80623f
MD5 2239681d36bb54daa9579b4f5750c95d
BLAKE2b-256 daacc5f3e3e7832918ece65e3a0f1fbf6a283961a81fd16b74b12dced8bc2a32

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 29e5c1108989d66dd1f326e54fb8ff7920bdb9f5ba9ec0975d1284a400cfcc75
MD5 d5047f47209cbef23cc732634cac9f14
BLAKE2b-256 591f6f89dc810c693990bb280629dede11fa1ed4907b4f270d2c9e864e80071f

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 7afb8815b28b4634dcf689bfc991b59e3ee1d67b12b7b24d8e44b98161c0c9af
MD5 76fe9c7ffbb0fddc17e410c607a243d5
BLAKE2b-256 e9cf79f34ce917db6728d4309d3953f6dcc9459bd4b284b1b0e9c81b396fd418

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0a4ac4c4f22e5146f48b274e4baa7014da9c89991d7e64a17fddfff1c82edb9d
MD5 1f72a9c0e5a4210a9c5146c64cdb8b7f
BLAKE2b-256 f068289bbfe58e49cc2348945761ac2398d74680595691cf77e8fec3c186fc41

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0185fe3e88f0d0277cae10488c351cc6441c62f92a20726a9e689768e2538610
MD5 cf44bf34eab4b6ab83190e3b190f6367
BLAKE2b-256 0da518a9b127a469a6dedadf4dd99270d180c630202521e4b52d67de2c666e0a

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e39bd77d8974f30e3ecdd9a20254d79d803d0d9e0ab8d0ecabed12cd0f618d71
MD5 87dcd7d7a2afe0584dda297def9ded95
BLAKE2b-256 77c7446428b15a471b6fcdd755cfdce1ac209824c769539093b205a8d02b6c6d

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: usearch-2.13.0-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 260.3 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for usearch-2.13.0-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 e68a7e25a466be271f5826fe95f99be4ba5381049597fdf83ba7a1d94ab996d3
MD5 8f6b2f6999081164c7ef4c2e3b48942c
BLAKE2b-256 1a71538b4eb64c231b3dc8b826d6a56d86ae5acb4a6576d2002604efaf1794b4

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: usearch-2.13.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 277.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for usearch-2.13.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 beb4ea2c99c4b3e4427a4d108072ac3e6f98594b44e277eb635f00cae52fc3c5
MD5 7d4babc6a1c9e7649a422e9f68a1068f
BLAKE2b-256 3cc39bf6a6f1e57bc7f474cf28ab572d0def0221159941875198a433545824f0

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 8f506cae6d3ab9cb9f28d104b7ce06efaaf99bc12e3e44e107bc1e54b0dfd26b
MD5 568f8402950d54736708e53775d0812d
BLAKE2b-256 bcdf6831d618de83f4a00157d8f6d76bc1392a5313a209222599fef5cb542945

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 0cc5ca4fd735f1c9085d5987a6b76533c8144a3065981b4fe8d8357122479b91
MD5 784decf435277664aa836a711dcebe0f
BLAKE2b-256 4b2447b8e94ce79f741dce90903a2c7102c68934ddcf365ff06105245ab63592

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 9d73edc68da1d9a8511fa0c1f6d95fb6d9caba93d37e75c77ceb1a0bd9aa08ca
MD5 3d56d98f1d5b5b53a33bca1aeaf23b8d
BLAKE2b-256 5630223038408016cb60ee6b244b47a6be77670de9cfff459307a65ed3631f9d

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 fc107b4d4314627cd787c0180001d70191ac31a6071c250ea2a6bba76005edd1
MD5 a443810217e3d25888cbcd4a6b80567b
BLAKE2b-256 4eebd712873f6c58065bd65ebfe0a7048494c0db7920e1686677b7a67a2c6cab

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 71887d18f67bb90a2728027e3fd774d1a3f3ba476072c76c10d463001fef29ed
MD5 eda8f3ecc502d64ee9983dba8ba0086c
BLAKE2b-256 47d7fbb09767ac267c0a486c8235c712329332261ed8a1fc9224a8aaee14605b

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d798f4995817078884ed27b52c59949deeed77fd308ae6c02817215ca1adaccf
MD5 90a4ca4942f219bc189d555e95ea112b
BLAKE2b-256 3a45f2271f4c1298b3557cc80eb2242e5b14aa84fda1ece29594fa9476508583

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 281b76e9ef9dd706eba3ff2fda134c2dd0c5bd60bee6ea920af611d7fbc5120d
MD5 78eb0b563f05f145bc8769a1a510a5fa
BLAKE2b-256 737709ef04214bc7e23158b2005cc4aa6e59bf66487b763a97ae1428442f9082

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: usearch-2.13.0-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 261.3 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for usearch-2.13.0-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 556268096331ad258d4a3ad81a8fb864d868dcbd8b2b49e65ef13cbc01736550
MD5 dafcdc1eae1d4dc90f14bab8a4c39f64
BLAKE2b-256 3e393e787813bd25d293f01a40241d2fe1be5bb15068407ea1c094da210fac7a

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: usearch-2.13.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 273.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for usearch-2.13.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0de736e82113c6177ea21b0b582f2f65c1c61c08ac8e3b33e09ffe4777142c13
MD5 8d9cc6f8162720b5b8ab4e42be8ae80e
BLAKE2b-256 298c59d9a5464a697b3fa3913cad271fb512ef276a18efa2dd5e4ae1221ffd8e

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 00c8b3e5694fa641cce573bbf7a88e75cba8a241eea4209a572acdb67013f2c6
MD5 ad1865596d636e7f53e8497cad218e53
BLAKE2b-256 dfe1ac643068ede0711d6d49d2dd1fbba92beaf9548bc3464f6e41cd459db94e

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 d1d39abdc58a829f09746e0d25980e315772a94e9e00ac1d66a64b0a0e45b976
MD5 12454644bdac28934cf725b3a1db550c
BLAKE2b-256 896e055d439ebcf3ec48ad63b294667283acadf0874764885c3709b5207c25c0

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 32461be624290fa916275bd5ba5ad1e8907852a6ddb93148422165ce7b85288c
MD5 4b301f7cff8a3c0c9af4350bf2379e0b
BLAKE2b-256 d6178e84a337c4c71c7f528e21e77c2504985bc8c2b8b0f75d2c9ac64e109fa6

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 f4f366cba6a64dc6b057a4d74a76f0116a6350042d1122eb9e914d5fe58d5e92
MD5 66eca57bc7270806b18b990425fdbe66
BLAKE2b-256 8974211a62d59704ce35862c3a7ed33c572e3b5fd24307a21e6863842804e369

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6543c7792b1e97104f5dbb9134053d3e115a3c991ecce39ac03a4d10f6a27901
MD5 3c7edfed9af8685d6d9c82bceb947c96
BLAKE2b-256 c1ccfc74fbdae798877f3edaaf531ebd3b68c75c9027c7dbfe0f1ded2e9d944a

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 11c893a1278893810fe386f88830cdfbe0d33dd950aacb1439aa994f94b30495
MD5 27a5effe792d927910530e521c57450e
BLAKE2b-256 e84aedf58283de5fa6452a84b0cf20796a50b9bcfd77b0de8ed03f54431029b7

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3f80075867b72177c278b1f40ce49fcf39eca372780d32c1d41c07cb4fd9e0af
MD5 fe7380a3515d2a02e8244e146ef334ec
BLAKE2b-256 185e2bd790835628d3e78c4f4874551152305164b2ebf98b462b878dd92be108

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: usearch-2.13.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 277.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for usearch-2.13.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ba6cf0a1d3b7563c4e3cf84c93e5a5ef1e164515b699a6561b0ac467b969d86a
MD5 68af08e1ccd98a893332909c382ebbdd
BLAKE2b-256 8f6229cdeec0578151e25d374ea429bcdc4c8651adbe05987d490533b5c2a0db

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9fc4c6691432de547780690a7283bf2d9d8ba8231750feacc99beafc43f842c6
MD5 c40ec61e5da53a4b58daaab81b05dafd
BLAKE2b-256 7bff36498f9c83b764b9542454b54ccdd91865ed0d24df9f953d563ce5243480

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 033de70ffb16e9869ffa9ddcf4970934b1d2819025974afd28d87a203305189f
MD5 e2928f4249d7630764660fd1cc475db3
BLAKE2b-256 b992b85be067952d22a197d6531f44af2dc59cefaa6a5af8f4e9edf27df1d22f

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ce29665658403ae8aea7c6810cd5050502e1b74cf6963dc84248120f02f72840
MD5 cbb5ebeda8282f1dd39f9e37120e1e50
BLAKE2b-256 0c82057b24046ad5447643833008783542762f97ea30a29ba3286ab98b4eb55c

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 04a45b39044f329acff92c8f9d5f299b0d26444b2a672dc6b3c64ae5d4ceaed0
MD5 e330066703a6259cdde1b84a3ed29298
BLAKE2b-256 566eb0a793ded48cc8e95702a2a07bcadc3a9d39fad9f52382c3160723383f1d

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 200a5a1e6ccf66e792fa444a2335580b558eeff1a699e239eff0f20622686d35
MD5 5166614d60fde7de94568ce0cfd454ba
BLAKE2b-256 d498a104391749d708cfc599cc3e59463f79a128a789ac9eb4ad6f4c81c4a412

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a896ff4271f9e9e85da46c547b0cfe5d7ad111a877347ea52b735f4ef52155f2
MD5 81ea7c70d7c0f55dc64da92bf9ddbf5e
BLAKE2b-256 47a0d4e636dfce6d8de2de331e0398561755a3b66df45fe758f8837d4ad7a8ef

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 1719dd5d016d14826b944dcd8103115dc1c19af717d71c4124c837b78844aea5
MD5 84768e9d5cd4dddc77d02729e0363cac
BLAKE2b-256 fd064eca50e141fb22955320db4f7a45dff140534c0371ee28ee5544c9ca9bba

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: usearch-2.13.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 278.7 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for usearch-2.13.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 df5d5dcf6957383481b125a59d65f77ab95254256cabde12bd1bfdbe5a517761
MD5 84d300c875efb1570bde6f4cca68d35a
BLAKE2b-256 086a4adfc4536f2fc653eee65da7e8f64b7b5695199a74a512ce7892c39378de

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5daaba78c86989a07dba26db876e6d56374ed60df0199d583be38f9a73da9667
MD5 2e9be200bd9545ce5232d140a184b864
BLAKE2b-256 55b36ced7a4cec4a7e3d45833749285aa656a6fd9543f89431ba6930425228fb

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp37-cp37m-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp37-cp37m-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 b65413101dd7f15e2667443b2d55aee22369359582da6b5c8cb63b1c98e8814a
MD5 64f3fd14dd52aded46144cf600ab91da
BLAKE2b-256 8951279a83aadae16093ba3eee2aebe1197df3b36954dfb4da500338f2d66c28

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 210ab08eba5a18e2870c26eef405e279f6fba816b471cb4af1ae5f06096a41f7
MD5 c73222ddb8fb89b0a0638a14258007cf
BLAKE2b-256 376aaaceba7c5112c7fd8a7e3c9dbf6a405d3644aceff215a6a1d4402dc864fe

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 a48e5c91395567851d31376550c6222b82a658032b0e2ce38d3ce7daf48fcaf6
MD5 74d6d742716f45a3dce713633ee05e2c
BLAKE2b-256 8ca6582393c84b11b1e9356f9ef89848e642017638961906add2e031b90b0e82

See more details on using hashes here.

File details

Details for the file usearch-2.13.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e41df8919650b38786f031c57157cfe6bc28f52ea2bc7c5a820134ec79bde3d9
MD5 c2b38d7d2e665ccb87c52af0a8b0164f
BLAKE2b-256 e89af003a891798f47205b1608893169649d6d0bd931969d7b2476071b732f7d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page