Skip to main content

Smaller & Faster Single-File Vector Search Engine from Unum

Project description

USearch

Smaller & Faster Single-File
Similarity Search Engine for Vectors & 🔜 Texts


Discord     LinkedIn     Twitter     Blog     GitHub

Spatial • Binary • Probabilistic • User-Defined Metrics
C++ 11Python 3JavaScriptJavaRustC 99Objective-CSwiftC#GoLangWolfram
Linux • MacOS • Windows • iOS • WebAssembly • SQLite3


Technical Insights and related articles:

Comparison with FAISS

FAISS is a widely recognized standard for high-performance vector search engines. USearch and FAISS both employ the same HNSW algorithm, but they differ significantly in their design principles. USearch is compact and broadly compatible without sacrificing performance, primarily focusing on user-defined metrics and fewer dependencies.

FAISS USearch Improvement
Indexing time ⁰
100 Million 96d f32, f16, i8 vectors 2.6 · 2.6 · 2.6 h 0.3 · 0.2 · 0.2 h 9.6 · 10.4 · 10.7 x
100 Million 1536d f32, f16, i8 vectors 5.0 · 4.1 · 3.8 h 2.1 · 1.1 · 0.8 h 2.3 · 3.6 · 4.4 x
Codebase length ¹ 84 K SLOC 3 K SLOC maintainable
Supported metrics ² 9 fixed metrics any metric extendible
Supported languages ³ C++, Python 10 languages portable
Supported ID types ⁴ 32-bit, 64-bit 32-bit, 40-bit, 64-bit efficient
Filtering ⁵ ban-lists any predicates composable
Required dependencies ⁶ BLAS, OpenMP - light-weight
Bindings ⁷ SWIG Native low-latency
Python binding size ⁸ ~ 10 MB < 1 MB deployable

Tested on Intel Sapphire Rapids, with the simplest inner-product distance, equivalent recall, and memory consumption while also providing far superior search speed. ¹ A shorter codebase of usearch/ over faiss/ makes the project easier to maintain and audit. ² User-defined metrics allow you to customize your search for various applications, from GIS to creating custom metrics for composite embeddings from multiple AI models or hybrid full-text and semantic search. ³ With USearch, you can reuse the same preconstructed index in various programming languages. ⁴ The 40-bit integer allows you to store 4B+ vectors without allocating 8 bytes for every neighbor reference in the proximity graph. ⁵ With USearch the index can be combined with arbitrary external containers, like Bloom filters or third-party databases, to filter out irrelevant keys during index traversal. ⁶ Lack of obligatory dependencies makes USearch much more portable. ⁷ Native bindings introduce lower call latencies than more straightforward approaches. ⁸ Lighter bindings make downloads and deployments faster.

Base functionality is identical to FAISS, and the interface must be familiar if you have ever investigated Approximate Nearest Neighbors search:

# pip install numpy usearch

import numpy as np
from usearch.index import Index

index = Index(ndim=3)

vector = np.array([0.2, 0.6, 0.4])
index.add(42, vector)

matches = index.search(vector, 10)

assert matches[0].key == 42
assert matches[0].distance <= 0.001
assert np.allclose(index[42], vector, atol=0.1) # Ensure high tolerance in mixed-precision comparisons

More settings are always available, and the API is designed to be as flexible as possible. The default storage/quantization level is hardware-dependant for efficiency, but f16 is recommended for most modern CPUs.

index = Index(
    ndim=3, # Define the number of dimensions in input vectors
    metric='cos', # Choose 'l2sq', 'ip', 'haversine' or other metric, default = 'cos'
    dtype='f16', # Store as 'f64', 'f32', 'f16', 'i8', 'b1'..., default = None
    connectivity=16, # Optional: Limit number of neighbors per graph node
    expansion_add=128, # Optional: Control the recall of indexing
    expansion_search=64, # Optional: Control the quality of the search
    multi=False, # Optional: Allow multiple vectors per key, default = False
)

Serialization & Serving Index from Disk

USearch supports multiple forms of serialization:

  • Into a file defined with a path.
  • Into a stream defined with a callback, serializing or reconstructing incrementally.
  • Into a buffer of fixed length or a memory-mapped file that supports random access.

The latter allows you to serve indexes from external memory, enabling you to optimize your server choices for indexing speed and serving costs. This can result in 20x cost reduction on AWS and other public clouds.

index.save("index.usearch")

loaded_copy = index.load("index.usearch")
view = Index.restore("index.usearch", view=True)

other_view = Index(ndim=..., metric=...)
other_view.view("index.usearch")

Exact vs. Approximate Search

Approximate search methods, such as HNSW, are predominantly used when an exact brute-force search becomes too resource-intensive. This typically occurs when you have millions of entries in a collection. For smaller collections, we offer a more direct approach with the search method.

from usearch.index import search, MetricKind, Matches, BatchMatches
import numpy as np

# Generate 10'000 random vectors with 1024 dimensions
vectors = np.random.rand(10_000, 1024).astype(np.float32)
vector = np.random.rand(1024).astype(np.float32)

one_in_many: Matches = search(vectors, vector, 50, MetricKind.L2sq, exact=True)
many_in_many: BatchMatches = search(vectors, vectors, 50, MetricKind.L2sq, exact=True)

If you pass the exact=True argument, the system bypasses indexing altogether and performs a brute-force search through the entire dataset using SIMD-optimized similarity metrics from SimSIMD. When compared to FAISS's IndexFlatL2 in Google Colab, USearch may offer up to a 20x performance improvement:

  • faiss.IndexFlatL2: 55.3 ms.
  • usearch.index.search: 2.54 ms.

User-Defined Metrics

While most vector search packages concentrate on just two metrics, "Inner Product distance" and "Euclidean distance", USearch allows arbitrary user-defined metrics. This flexibility allows you to customize your search for various applications, from computing geospatial coordinates with the rare Haversine distance to creating custom metrics for composite embeddings from multiple AI models, like joint image-text embeddings. You can use Numba, Cppyy, or PeachPy to define your custom metric even in Python:

from numba import cfunc, types, carray
from usearch.index import Index, MetricKind, MetricSignature, CompiledMetric

@cfunc(types.float32(types.CPointer(types.float32), types.CPointer(types.float32)))
def python_inner_product(a, b):
    a_array = carray(a, ndim)
    b_array = carray(b, ndim)
    c = 0.0
    for i in range(ndim):
        c += a_array[i] * b_array[i]
    return 1 - c

metric = CompiledMetric(pointer=python_inner_product.address, kind=MetricKind.IP, signature=MetricSignature.ArrayArray)
index = Index(ndim=ndim, metric=metric, dtype=np.float32)

Similar effect is even easier to achieve in C, C++, and Rust interfaces. Moreover, unlike older approaches indexing high-dimensional spaces, like KD-Trees and Locality Sensitive Hashing, HNSW doesn't require vectors to be identical in length. They only have to be comparable. So you can apply it in obscure applications, like searching for similar sets or fuzzy text matching, using GZip compression-ratio as a distance function.

Filtering and Predicate Functions

Sometimes you may want to cross-reference search-results against some external database or filter them based on some criteria. In most engines, you'd have to manually perform paging requests, successively filtering the results. In USearch you can simply pass a predicate function to the search method, which will be applied directly during graph traversal. In Rust that would look like this:

let is_odd = |key: Key| key % 2 == 1;
let query = vec![0.2, 0.1, 0.2, 0.1, 0.3];
let results = index.filtered_search(&query, 10, is_odd).unwrap();
assert!(
    results.keys.iter().all(|&key| key % 2 == 1),
    "All keys must be odd"
);

Memory Efficiency, Downcasting, and Quantization

Training a quantization model and dimension-reduction is a common approach to accelerate vector search. Those, however, are only sometimes reliable, can significantly affect the statistical properties of your data, and require regular adjustments if your distribution shifts. Instead, we have focused on high-precision arithmetic over low-precision downcasted vectors. The same index, and add and search operations will automatically down-cast or up-cast between f64_t, f32_t, f16_t, i8_t, and single-bit representations. You can use the following command to check, if hardware acceleration is enabled:

$ python -c 'from usearch.index import Index; print(Index(ndim=768, metric="cos", dtype="f16").hardware_acceleration)'
> sapphire
$ python -c 'from usearch.index import Index; print(Index(ndim=166, metric="tanimoto").hardware_acceleration)'
> ice

Using smaller numeric types will save you RAM needed to store the vectors, but you can also compress the neighbors lists forming our proximity graphs. By default, 32-bit uint32_t is used to enumerate those, which is not enough if you need to address over 4 Billion entries. For such cases we provide a custom uint40_t type, that will still be 37.5% more space-efficient than the commonly used 8-byte integers, and will scale up to 1 Trillion entries.

USearch uint40_t support

Indexes for Multi-Index Lookups

For larger workloads targeting billions or even trillions of vectors, parallel multi-index lookups become invaluable. Instead of constructing one extensive index, you can build multiple smaller ones and view them together.

from usearch.index import Indexes

multi_index = Indexes(
    indexes: Iterable[usearch.index.Index] = [...],
    paths: Iterable[os.PathLike] = [...],
    view: bool = False,
    threads: int = 0,
)
multi_index.search(...)

Clustering

Once the index is constructed, USearch can perform K-Nearest Neighbors Clustering much faster than standalone clustering libraries, like SciPy, UMap, and tSNE. Same for dimensionality reduction with PCA. Essentially, the Index itself can be seen as a clustering, allowing iterative deepening.

clustering = index.cluster(
    min_count=10, # Optional
    max_count=15, # Optional
    threads=..., # Optional
)

# Get the clusters and their sizes
centroid_keys, sizes = clustering.centroids_popularity

# Use Matplotlib to draw a histogram
clustering.plot_centroids_popularity()

# Export a NetworkX graph of the clusters
g = clustering.network

# Get members of a specific cluster
first_members = clustering.members_of(centroid_keys[0])

# Deepen into that cluster, splitting it into more parts, all the same arguments supported
sub_clustering = clustering.subcluster(min_count=..., max_count=...)

The resulting clustering isn't identical to K-Means or other conventional approaches but serves the same purpose. Alternatively, using Scikit-Learn on a 1 Million point dataset, one may expect queries to take anywhere from minutes to hours, depending on the number of clusters you want to highlight. For 50'000 clusters, the performance difference between USearch and conventional clustering methods may easily reach 100x.

Joins, One-to-One, One-to-Many, and Many-to-Many Mappings

One of the big questions these days is how AI will change the world of databases and data management. Most databases are still struggling to implement high-quality fuzzy search, and the only kind of joins they know are deterministic. A join differs from searching for every entry, requiring a one-to-one mapping banning collisions among separate search results.

Exact Search Fuzzy Search Semantic Search ?
Exact Join Fuzzy Join ? Semantic Join ??

Using USearch, one can implement sub-quadratic complexity approximate, fuzzy, and semantic joins. This can be useful in any fuzzy-matching tasks common to Database Management Software.

men = Index(...)
women = Index(...)
pairs: dict = men.join(women, max_proposals=0, exact=False)

Read more in the post: Combinatorial Stable Marriages for Semantic Search 💍

Functionality

By now, the core functionality is supported across all bindings. Broader functionality is ported per request. In some cases, like Batch operations, feature parity is meaningless, as the host language has full multi-threading capabilities and the USearch index structure is concurrent by design, so the users can implement batching/scheduling/load-balancing in the most optimal way for their applications.

C++ 11 Python 3 C 99 Java JavaScript Rust GoLang Swift
Add, search, remove
Save, load, view
User-defined metrics
Batch operations
Filter predicates
Joins
Variable-length vectors
4B+ capacities

Application Examples

USearch + UForm + UCall = Multimodal Semantic Search

AI has a growing number of applications, but one of the coolest classic ideas is to use it for Semantic Search. One can take an encoder model, like the multi-modal UForm, and a web-programming framework, like UCall, and build a text-to-image search platform in just 20 lines of Python.

from ucall import Server
from uform import get_model, Modality
from usearch.index import Index

import numpy as np
import PIL as pil

processors, models = get_model('unum-cloud/uform3-image-text-english-small')
model_text = models[Modality.TEXT_ENCODER]
model_image = models[Modality.IMAGE_ENCODER]
processor_text = processors[Modality.TEXT_ENCODER]
processor_image = processors[Modality.IMAGE_ENCODER]

server = Server()
index = Index(ndim=256)

@server
def add(key: int, photo: pil.Image.Image):
    image = processor_image(photo)
    vector = model_image(image)
    index.add(key, vector.flatten(), copy=True)

@server
def search(query: str) -> np.ndarray:
    tokens = processor_text(query)
    vector = model_text(tokens)
    matches = index.search(vector.flatten(), 3)
    return matches.keys

server.run()

Similar experiences can also be implemented in other languages and on the client side, removing the network latency. For Swift and iOS, check out the ashvardanian/SwiftSemanticSearch repository.

SwiftSemanticSearch demo Dog SwiftSemanticSearch demo with Flowers

A more complete demo with Streamlit is available on GitHub. We have pre-processed some commonly used datasets, cleaned the images, produced the vectors, and pre-built the index.

Dataset Modalities Images Download
Unsplash Images & Descriptions 25 K HuggingFace / Unum
Conceptual Captions Images & Descriptions 3 M HuggingFace / Unum
Arxiv Titles & Abstracts 2 M HuggingFace / Unum

USearch + RDKit = Molecular Search

Comparing molecule graphs and searching for similar structures is expensive and slow. It can be seen as a special case of the NP-Complete Subgraph Isomorphism problem. Luckily, domain-specific approximate methods exist. The one commonly used in Chemistry is to generate structures from SMILES and later hash them into binary fingerprints. The latter are searchable with binary similarity metrics, like the Tanimoto coefficient. Below is an example using the RDKit package.

from usearch.index import Index, MetricKind
from rdkit import Chem
from rdkit.Chem import AllChem

import numpy as np

molecules = [Chem.MolFromSmiles('CCOC'), Chem.MolFromSmiles('CCO')]
encoder = AllChem.GetRDKitFPGenerator()

fingerprints = np.vstack([encoder.GetFingerprint(x) for x in molecules])
fingerprints = np.packbits(fingerprints, axis=1)

index = Index(ndim=2048, metric=MetricKind.Tanimoto)
keys = np.arange(len(molecules))

index.add(keys, fingerprints)
matches = index.search(fingerprints, 10)

That method was used to build the "USearch Molecules", one of the largest Chem-Informatics datasets, containing 7 billion small molecules and 28 billion fingerprints.

USearch + POI Coordinates = GIS Applications

Similar to Vector and Molecule search, USearch can be used for Geospatial Information Systems. The Haversine distance is available out of the box, but you can also define more complex relationships, like the Vincenty formula, that accounts for the Earth's oblateness.

from numba import cfunc, types, carray
import math

# Define the dimension as 2 for latitude and longitude
ndim = 2

# Signature for the custom metric
signature = types.float32(
    types.CPointer(types.float32),
    types.CPointer(types.float32))

# WGS-84 ellipsoid parameters
a = 6378137.0  # major axis in meters
f = 1 / 298.257223563  # flattening
b = (1 - f) * a  # minor axis

def vincenty_distance(a_ptr, b_ptr):
    a_array = carray(a_ptr, ndim)
    b_array = carray(b_ptr, ndim)
    lat1, lon1, lat2, lon2 = a_array[0], a_array[1], b_array[0], b_array[1]
    L, U1, U2 = lon2 - lon1, math.atan((1 - f) * math.tan(lat1)), math.atan((1 - f) * math.tan(lat2))
    sinU1, cosU1, sinU2, cosU2 = math.sin(U1), math.cos(U1), math.sin(U2), math.cos(U2)
    lambda_, iterLimit = L, 100
    while iterLimit > 0:
        iterLimit -= 1
        sinLambda, cosLambda = math.sin(lambda_), math.cos(lambda_)
        sinSigma = math.sqrt((cosU2 * sinLambda) ** 2 + (cosU1 * sinU2 - sinU1 * cosU2 * cosLambda) ** 2)
        if sinSigma == 0: return 0.0  # Co-incident points
        cosSigma, sigma = sinU1 * sinU2 + cosU1 * cosU2 * cosLambda, math.atan2(sinSigma, cosSigma)
        sinAlpha, cos2Alpha = cosU1 * cosU2 * sinLambda / sinSigma, 1 - (cosU1 * cosU2 * sinLambda / sinSigma) ** 2
        cos2SigmaM = cosSigma - 2 * sinU1 * sinU2 / cos2Alpha if not math.isnan(cosSigma - 2 * sinU1 * sinU2 / cos2Alpha) else 0  # Equatorial line
        C = f / 16 * cos2Alpha * (4 + f * (4 - 3 * cos2Alpha))
        lambda_, lambdaP = L + (1 - C) * f * (sinAlpha * (sigma + C * sinSigma * (cos2SigmaM + C * cosSigma * (-1 + 2 * cos2SigmaM ** 2)))), lambda_
        if abs(lambda_ - lambdaP) <= 1e-12: break
    if iterLimit == 0: return float('nan')  # formula failed to converge
    u2 = cos2Alpha * (a ** 2 - b ** 2) / (b ** 2)
    A = 1 + u2 / 16384 * (4096 + u2 * (-768 + u2 * (320 - 175 * u2)))
    B = u2 / 1024 * (256 + u2 * (-128 + u2 * (74 - 47 * u2)))
    deltaSigma = B * sinSigma * (cos2SigmaM + B / 4 * (cosSigma * (-1 + 2 * cos2SigmaM ** 2) - B / 6 * cos2SigmaM * (-3 + 4 * sinSigma ** 2) * (-3 + 4 * cos2SigmaM ** 2)))
    s = b * A * (sigma - deltaSigma)
    return s / 1000.0  # Distance in kilometers

# Example usage:
index = Index(ndim=ndim, metric=CompiledMetric(
    pointer=vincenty_distance.address,
    kind=MetricKind.Haversine,
    signature=MetricSignature.ArrayArray,
))

Integrations & Users

Citations

@software{Vardanian_USearch_2023,
doi = {10.5281/zenodo.7949416},
author = {Vardanian, Ash},
title = {{USearch by Unum Cloud}},
url = {https://github.com/unum-cloud/usearch},
version = {2.13.3},
year = {2023},
month = oct,
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

usearch-2.13.3-cp312-cp312-win_arm64.whl (262.5 kB view details)

Uploaded CPython 3.12 Windows ARM64

usearch-2.13.3-cp312-cp312-win_amd64.whl (279.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

usearch-2.13.3-cp312-cp312-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

usearch-2.13.3-cp312-cp312-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

usearch-2.13.3-cp312-cp312-manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

usearch-2.13.3-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.13.3-cp312-cp312-macosx_11_0_arm64.whl (362.8 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

usearch-2.13.3-cp312-cp312-macosx_10_9_x86_64.whl (374.7 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

usearch-2.13.3-cp312-cp312-macosx_10_9_universal2.whl (696.4 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.13.3-cp311-cp311-win_arm64.whl (261.4 kB view details)

Uploaded CPython 3.11 Windows ARM64

usearch-2.13.3-cp311-cp311-win_amd64.whl (278.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

usearch-2.13.3-cp311-cp311-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

usearch-2.13.3-cp311-cp311-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

usearch-2.13.3-cp311-cp311-manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

usearch-2.13.3-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.13.3-cp311-cp311-macosx_11_0_arm64.whl (361.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

usearch-2.13.3-cp311-cp311-macosx_10_9_x86_64.whl (371.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

usearch-2.13.3-cp311-cp311-macosx_10_9_universal2.whl (692.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.13.3-cp310-cp310-win_arm64.whl (260.3 kB view details)

Uploaded CPython 3.10 Windows ARM64

usearch-2.13.3-cp310-cp310-win_amd64.whl (277.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

usearch-2.13.3-cp310-cp310-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

usearch-2.13.3-cp310-cp310-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

usearch-2.13.3-cp310-cp310-manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

usearch-2.13.3-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.13.3-cp310-cp310-macosx_11_0_arm64.whl (360.1 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

usearch-2.13.3-cp310-cp310-macosx_10_9_x86_64.whl (369.8 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

usearch-2.13.3-cp310-cp310-macosx_10_9_universal2.whl (690.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.13.3-cp39-cp39-win_arm64.whl (261.3 kB view details)

Uploaded CPython 3.9 Windows ARM64

usearch-2.13.3-cp39-cp39-win_amd64.whl (273.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

usearch-2.13.3-cp39-cp39-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

usearch-2.13.3-cp39-cp39-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

usearch-2.13.3-cp39-cp39-manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

usearch-2.13.3-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.13.3-cp39-cp39-macosx_11_0_arm64.whl (360.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

usearch-2.13.3-cp39-cp39-macosx_10_9_x86_64.whl (370.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

usearch-2.13.3-cp39-cp39-macosx_10_9_universal2.whl (690.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.13.3-cp38-cp38-win_amd64.whl (277.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

usearch-2.13.3-cp38-cp38-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

usearch-2.13.3-cp38-cp38-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

usearch-2.13.3-cp38-cp38-manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

usearch-2.13.3-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.13.3-cp38-cp38-macosx_11_0_arm64.whl (359.9 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

usearch-2.13.3-cp38-cp38-macosx_10_9_x86_64.whl (370.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

usearch-2.13.3-cp38-cp38-macosx_10_9_universal2.whl (690.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.13.3-cp37-cp37m-win_amd64.whl (278.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

usearch-2.13.3-cp37-cp37m-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

usearch-2.13.3-cp37-cp37m-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ARM64

usearch-2.13.3-cp37-cp37m-manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

usearch-2.13.3-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.13.3-cp37-cp37m-macosx_10_9_x86_64.whl (367.0 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file usearch-2.13.3-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: usearch-2.13.3-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 262.5 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.3-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 7a96ec0ebb10d957fce309e5011974d26b98f7c56d765ad50f56b9268a3fb47c
MD5 266da15cf707121707e2130970bd4bd5
BLAKE2b-256 5f534b52b8f45b7596b389487f3352e627d4c2ddf4aea872147f2a99b0e2b574

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: usearch-2.13.3-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 279.7 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 2ce39ffe915fe065aa5af2818d60c8e76446c23d58d55985dc51b36984c1dd21
MD5 232552bb87aa5ad3ae8ba26959553a7f
BLAKE2b-256 f76b95f89b170aa04ce06fa7a7d05263ca19419719ec6c326a6af060d1af83f2

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 acd799cda761ff582e3094a2a17e81804037f3680d914e3da8e9c9defaec87b1
MD5 13e1e3d5b981b520387587f161e14552
BLAKE2b-256 3fe7eba02fbac72bdcfbe41a88349c940488b0ad35c865c9a01d8dcca44681b5

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 a62b118185c1db0470da81086dfdc620581fbcceb15a8faae4c62ee69a4f4208
MD5 6a1230bb20c9680c1298350a9da7fc01
BLAKE2b-256 66ff2aadee75b3274a77d87c6873435b5f78d1c92def9f4fd9a92cf18e3304b9

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 19d50a3b3e5662b7fc60e5f95c5c9c1832719739dae3d49dcd5dd8e4ca2f316d
MD5 c6c2d07fb5d9429507b167d58d09f0a3
BLAKE2b-256 ba579be14b9c0faa041953d692d935a68ec83f7a5b81024413109b57f61814d2

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d7cab582fa357e848c46d875b8786b75fa88795d9b18272d3d1034e6bc2047b2
MD5 dfbd8be33ce0c22c46e040b8109db949
BLAKE2b-256 a5cd67728a550080259d7b6fdb1599e0037f0492c9ddf5b7530dab25516a5744

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c4736a223093d27cbea56a99f2f9d0bc062297216ddb5f59061d6558733e905b
MD5 0507a3fc045545752e5d19770943aa2b
BLAKE2b-256 0e23ddf7c6713ae8d2d30491dac488a39497a6357c6f8c549590c24c966959b3

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 525372d91958dbaee002cbb5041a1cd8e15558e3d9a42c5feb64a0df40e44b70
MD5 14469855dbf0e9743a22a784c3e1845d
BLAKE2b-256 e24441ef04da0f48f6a6e4cf4593a340a1df810244f8938d31e7a0ecbd96e84c

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a91727a4e3932828a755679e4accba6874dd6a2e574f3d819e595360a6db1b61
MD5 f9a65af4e55040c1e5b472aa4210ae7a
BLAKE2b-256 38e1084dbf63398859122de1afea121cfa1baef17f8c7c52b371f7e29539f32d

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: usearch-2.13.3-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 261.4 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.3-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 8b6bff05b90368491bc9654ad3e0d0e92f0150ec5eadef9056f975c6f4d8b589
MD5 2e580260f648f8cb109a0fd4a377e01c
BLAKE2b-256 ef862123e43b7bf35f32631af3cf1cd4548c0423b4e22660c308dece7cf0b436

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: usearch-2.13.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 278.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 a12dc50e52840bfceaf83ad27e1eb6d7653a886f2109903f7df207be0c019936
MD5 6486dc610d91c1e18aee0c10c6dce19e
BLAKE2b-256 ae3cedc81b4946e504f900f77c8362910c4d918f1fcd3496b3d2f9d9259211eb

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 92137a4c215f672c2f7b2d79976bb52fcfe327a4dcf564bbd9021b0089f382bb
MD5 585109db33e15251ace61d40742b9337
BLAKE2b-256 c0d0bd8e012f8633fdf6ff86b1c689a15eec923a48777c2d9d6661845e708b4d

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 1a1b8939e8d1ea8a91fe2b86e357ef769068e205c1e9588d616e6165aa4c3b7c
MD5 36caf0f880f1269d7b7bb6782984f920
BLAKE2b-256 9e022c08d0db2803f02e9a45ffbf44f5f8b24aaeebc2fc839960efe1b21be172

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d83a5c8bfb5c7e17cad292534a252cc560e811c1de75bb691a338e827fd81327
MD5 b8838c950e5be9cd632d02efb71a3007
BLAKE2b-256 53ead8c7534dd4e8952c3d7fded406bb120bc99774b95e5cc7f9b2e5c38f1dea

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 08cb713851567e2ad0789d79d5bcf647f8e3c50db31496800033a9fb31650e6a
MD5 d1e6bc0dcb60e0ea88ac5b897dcb726a
BLAKE2b-256 53d7cd2e164427de0c50395afa0eb0324f3f3e7583e50b21e5b70432e561e00b

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1d6494cfdd5a1578db886ebd3d0d5b6c4d747e9c4abae664c928ccdd7df85644
MD5 0ec0946080e8629f789baf0a89015ee4
BLAKE2b-256 e5b18d731d1e56c933a323b9d2f9847c7e379d417ae1507588edc69717fe28c8

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 99badf42e51ea4d563452c084aa0e90b24085188a052d2ce00b19cafdc30f273
MD5 7d8cba8341945490d9859ccbc56ededf
BLAKE2b-256 6b40468d0249e6765aba91afd92d75779c96bdcf4674cd670b9a67de24dab79d

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8d564d1137e66d4a59dbb864605e1ccd0efaadcbf171cd6199fae3e8349b230d
MD5 518e565935089a2847f9329207b021bb
BLAKE2b-256 d997f63f0715d7931831f66359bbf3db90322948935d271f5eaad32bfe7fe005

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: usearch-2.13.3-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 260.3 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.3-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 9a1654a7f522d5eb02e9b27456ebde1ce8684c2b95cf467677aba42988784d0e
MD5 9a2a3fde5c31511aa45fc20c1bf4840a
BLAKE2b-256 afce49f7a43d103d0cb9a487e949a1f9e437050ad80d993117964a011855fce0

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: usearch-2.13.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 277.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 54646ef61bc9ede6ee4ac90b5719f3627bbaaa730cf3af30e9bf9b20dd144fb5
MD5 9dba73c6e2d982974258c7cf76eebc69
BLAKE2b-256 e4fa6af04964561ad4b795103d452643d6768db331494b38ad2dc39c58338591

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 3a4bff2b586f9f6e54894f575340b514f1a56854ba23cbbe0e99af6f670b1185
MD5 dcd4fae85fdd75371234a46202dcc122
BLAKE2b-256 9dd4a7db0d16f5b725db9eb73490419314c78638b9ae07d80156e79da72d5c5c

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 d7bedc251308369a8ae3c018fdbd0f08b765eb013102b031b8553df43c9396ae
MD5 e68386ab53d8d54e77687e3c6502091c
BLAKE2b-256 373f9222cedb3d81b22d2615cd541fc26df358eb3ec24bf7776380c9e09ee7c8

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 06a1f3a9d8c8ef438bff7daf98ee7cab9117a2690ee36bfb4c9055510158928b
MD5 6b654ee5667d8213f7001e3623d959ba
BLAKE2b-256 4206928ae8e9460726e17b4e8054f8adfc728f7117c1f03e2ffa7847fa790974

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 2cfd62bba5eb2af2709fb5de7f3ad57b2d923f0b6803d70880b9eed35102b1b2
MD5 090198d9d000801afb4f783695a1dfaa
BLAKE2b-256 b4633407c9beac50ef3d557aff7691ee9867a0887ad9ae06c95d6f57b11ebf9b

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cf293d42303b8b1fc0fc96681afb14de7fade073699410a31981c5474de16742
MD5 c63410e50fbb8066584dbafcbf6c06b7
BLAKE2b-256 aaaaf1d84191642b3a24d6888f332579e50333a64d6a501d055fffffc8884785

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 884c46bbad39901fa1761adacf56fb5c22ad706bdb5c334722e3cf777df6ae70
MD5 b617e65715eea075f37fd6f87c6fc330
BLAKE2b-256 abd722d18b253569ce1a84a80da69f585359b71cdab53e77417c062d310ed460

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 094e2df006ad5cd06bc00ab55fabd0cfa34600d6ab397c2bdebecf9bd86f2693
MD5 c8e3f88b5cc2cf3646316515667f5337
BLAKE2b-256 339df8efb0affa073ca1bab47c9fd561e7a60939c11a686a0c0af2c7ccd906b0

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: usearch-2.13.3-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 261.3 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.3-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 be31e30420d3b1d0f83c10a7241f16f619b9f2300ca6ac876aa5c4d9951de41d
MD5 337b2a9eba31c19b4fa85b5173b07340
BLAKE2b-256 176a9014998fcf42990d055e3644d23378354ceb33cea31d9ad5339fd5366ddd

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: usearch-2.13.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 273.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8ea092e5ec544be5a3aea86bdcaef5a7548ecf7d005344a35b08cd9c14e1f2c8
MD5 f01a8e58394f75959eee88459aa9667d
BLAKE2b-256 3ac677f0da33f2b670a1bdb6c69d50ce5c8fd3a4701ed46e50a37b9d3505704f

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 83e9dde6fabd20f2261371cfcf2f084438a0f43d8114d9f30d9b5450d70e28ab
MD5 c3cbf91c9622bbcaa8817fb4a1e2a180
BLAKE2b-256 2113229d7871bcec34f7c6735683e142db6d00653fd3c9e20280b46fa040a4ed

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 b4de5af07a7935702d6392a0f4242c42e1640292b99cf6549dba093cbfb1b5bf
MD5 4d6302dfadfe2317e7fe7d3324e0ea99
BLAKE2b-256 1d65383e1ba083306abe398b927a0b4d0503f0217a36e58716b61d92f00e13b0

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f8643cc1d1b734b56dda397a4001099ba015f709d46566194e48344147d2e0aa
MD5 4063ad098ec5cc82f4b5fa466b8eaaf1
BLAKE2b-256 b112f79a5333ab19114d59c83978a654dbabcb8c0397486ed6504fbacff419db

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 1c87d26b32ac029ef875f255e0a71de1cd6d274566181bdd467698b18eea1d22
MD5 3e853b3f5efe31acb661d177807dc25d
BLAKE2b-256 7523d13a2b6f5b8e53811514304ee4e13e68f77f5766f7bf928df278fc3e30fa

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 54ef9881c6b454391a008855afa261a774fcec2064168a82d75d3c6b4cea6542
MD5 db13c327085e14f6b557bb304b629de2
BLAKE2b-256 ff333ce5610dfee28246f3863ba85a1689649ec0e3a3bdb25e14f82a47865dda

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f57b1e0bb809790e8cf5dae0f2df7ee8afa36fc9aab12d644f5f96158ab84f12
MD5 9340762b3bf7f63114b1ca95c7b52dbf
BLAKE2b-256 ae798423c1234c558dbc15e498a4e4b1717ede1a1d0b2865420d1eea1ada8360

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 1d730d308d5a312e34021f235f3df0fa3024737a0ad266712aeaff487f557514
MD5 2271969e8d9869c50835cdd9727bef40
BLAKE2b-256 2e4e974c5a6553f255033b1f841be073c7e60a515fbe21c819e070d35971e929

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: usearch-2.13.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 277.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 082c68a26884d7c2adbf09493e8a9cbc3cf411fe6fa51def6ac36c10ffd92e7e
MD5 a31f78c2b39e6ac0fe9f95005793a214
BLAKE2b-256 77b07b71d95d6c07b47e8abcf8a3ff0f89d622d882f475fd7b59e7838f946a04

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 92fb83cdd706f4d566ad39d2d86b881d52e440f13049e6bf5fb9669327d31397
MD5 25b3b2c22d58418d1d45d0a943d7d0f9
BLAKE2b-256 65a74c964f081e45a432fe3cac552b2b73c691007a7bebd6f60a1cc0abb67478

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 b0807de7f3ee7a9cf14b41397871242fc8138dab0da5d804c63ea9e366496711
MD5 ca86337adb0ef6f05b67aa865fbca189
BLAKE2b-256 b3f422f24afc48d84b6f35b7891ef873b1346f8eb2e66df14e6e3f606643d4dd

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7c23521df1c9ace7e43a8cc14c132f8179b4319457936f128c2e3dd87be0afb2
MD5 7a5002e1991b895f58cd194beb831af2
BLAKE2b-256 855ace55f01432522e455519a6ead4dd8159a544e255023a41d95809fc2fb5f0

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 36715c07bc475d2384a1910efe62eb6b4baf3806dffdef8071a594309c298ae7
MD5 624b3eaaf7214da585add718cfc80dbc
BLAKE2b-256 3d5b9f5eeea8e23de9d67db275d0771a0dd8602e3febff5b78e358f0ec2e2b21

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 28d74afbd9473ef349f36091d43b3fd9e3217e200e4d674a0d0acab219d6ee5d
MD5 f7bd6f5c378f2edd83b36047e88d1366
BLAKE2b-256 3d266ce99149d470ae39653139e1d8ad631eadbe1707eaa0f56a271970cbf38f

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6082b7369391cab6d701c771a71e68533d022da91298d62ad85192392016c58b
MD5 833d4bbb736aa8b35ffe42e337364c8a
BLAKE2b-256 2e903b5c61e2d45073ae1fd08224ad03a8d19bc1a86ea52e55b4c162a7b4efe5

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 da6b9de04a23cc407e6b9d2b25db5b91afcb06ca9900ec33ceb715e3a63fe51c
MD5 a8b60d75d97438bf356020e30632172e
BLAKE2b-256 9bd312b1b8dc2897b3cbde854f3f83feb06107497142ec8ab8a27ea0f1ffb4f5

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: usearch-2.13.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 278.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 5e2c3a46db2518f78b503bae9420c4256e9034d0fa84d0191833527a7bea43ab
MD5 79a153c4d2c04c938396a78d74006a76
BLAKE2b-256 6045a9e2376b2c23e9c98686c2c82ace519ab938b7eff32de26b85eaa74d712b

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f408cbe0eb92967c130c697c465982613aa3c0743e119ae38a6eb58fd8a56561
MD5 16e9f5bb7e1f2e2073d98d6b02dc966c
BLAKE2b-256 4e91a81a78def24e7c0d2c2b755bfe4b885930ec497c01ed7b4610315ebe7aef

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp37-cp37m-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp37-cp37m-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 e93fd97a5a36e3b8624f688b2c8d38aa9994e875920e5d8c7d432630ca6dd6cd
MD5 f89fdf4e6ed7b877bdd0915b7f3699ea
BLAKE2b-256 2c4ec5de72085094b325daae96159b20abcdb26e1dcf0acb4ded4423baa304c3

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 97d6e8675a8c6336b2dbe6d0dc75b439111346cad2f234400350e39948b8ef67
MD5 9ecabbbeaf977b616859609ac5515f9d
BLAKE2b-256 e80896b1cbe017fbeb0d0681de401807e5525bd221d5e5e5db143a23ae3d9d83

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 fc597e5ded5ef36801d90f515efaa37ffbc05b566bd37584ae9d626ac44eafd2
MD5 2846e4cadb092f9e37e6c4a43b7e5ad8
BLAKE2b-256 7ddef85f573ce0357ddf93db701ca3eb71e2232b91613cf0da4c57f7ca53878b

See more details on using hashes here.

File details

Details for the file usearch-2.13.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 960fc81127ff9d077d01ec394c04876f740a6e9fbe1b2b965b30594fd553f40a
MD5 fc5725492feef39fdc4202b24b147fc9
BLAKE2b-256 3fef14255945fa2903e5d8120807d75ad2be651010d5def5f104d553cf529718

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page