Skip to main content

Smaller & Faster Single-File Vector Search Engine from Unum

Project description

USearch

Smaller & Faster Single-File
Similarity Search Engine for Vectors & 🔜 Texts


Discord     LinkedIn     Twitter     Blog     GitHub

Spatial • Binary • Probabilistic • User-Defined Metrics
C++ 11Python 3JavaScriptJavaRustC 99Objective-CSwiftC#GoLangWolfram
Linux • MacOS • Windows • iOS • WebAssembly • SQLite3


Technical Insights and related articles:

Comparison with FAISS

FAISS is a widely recognized standard for high-performance vector search engines. USearch and FAISS both employ the same HNSW algorithm, but they differ significantly in their design principles. USearch is compact and broadly compatible without sacrificing performance, primarily focusing on user-defined metrics and fewer dependencies.

FAISS USearch Improvement
Indexing time ⁰
100 Million 96d f32, f16, i8 vectors 2.6 · 2.6 · 2.6 h 0.3 · 0.2 · 0.2 h 9.6 · 10.4 · 10.7 x
100 Million 1536d f32, f16, i8 vectors 5.0 · 4.1 · 3.8 h 2.1 · 1.1 · 0.8 h 2.3 · 3.6 · 4.4 x
Codebase length ¹ 84 K SLOC 3 K SLOC maintainable
Supported metrics ² 9 fixed metrics any metric extendible
Supported languages ³ C++, Python 10 languages portable
Supported ID types ⁴ 32-bit, 64-bit 32-bit, 40-bit, 64-bit efficient
Filtering ⁵ ban-lists any predicates composable
Required dependencies ⁶ BLAS, OpenMP - light-weight
Bindings ⁷ SWIG Native low-latency
Python binding size ⁸ ~ 10 MB < 1 MB deployable

Tested on Intel Sapphire Rapids, with the simplest inner-product distance, equivalent recall, and memory consumption while also providing far superior search speed. ¹ A shorter codebase of usearch/ over faiss/ makes the project easier to maintain and audit. ² User-defined metrics allow you to customize your search for various applications, from GIS to creating custom metrics for composite embeddings from multiple AI models or hybrid full-text and semantic search. ³ With USearch, you can reuse the same preconstructed index in various programming languages. ⁴ The 40-bit integer allows you to store 4B+ vectors without allocating 8 bytes for every neighbor reference in the proximity graph. ⁵ With USearch the index can be combined with arbitrary external containers, like Bloom filters or third-party databases, to filter out irrelevant keys during index traversal. ⁶ Lack of obligatory dependencies makes USearch much more portable. ⁷ Native bindings introduce lower call latencies than more straightforward approaches. ⁸ Lighter bindings make downloads and deployments faster.

Base functionality is identical to FAISS, and the interface must be familiar if you have ever investigated Approximate Nearest Neighbors search:

# pip install numpy usearch

import numpy as np
from usearch.index import Index

index = Index(ndim=3)

vector = np.array([0.2, 0.6, 0.4])
index.add(42, vector)

matches = index.search(vector, 10)

assert matches[0].key == 42
assert matches[0].distance <= 0.001
assert np.allclose(index[42], vector, atol=0.1) # Ensure high tolerance in mixed-precision comparisons

More settings are always available, and the API is designed to be as flexible as possible. The default storage/quantization level is hardware-dependant for efficiency, but f16 is recommended for most modern CPUs.

index = Index(
    ndim=3, # Define the number of dimensions in input vectors
    metric='cos', # Choose 'l2sq', 'ip', 'haversine' or other metric, default = 'cos'
    dtype='f16', # Store as 'f64', 'f32', 'f16', 'i8', 'b1'..., default = None
    connectivity=16, # Optional: Limit number of neighbors per graph node
    expansion_add=128, # Optional: Control the recall of indexing
    expansion_search=64, # Optional: Control the quality of the search
    multi=False, # Optional: Allow multiple vectors per key, default = False
)

Serialization & Serving Index from Disk

USearch supports multiple forms of serialization:

  • Into a file defined with a path.
  • Into a stream defined with a callback, serializing or reconstructing incrementally.
  • Into a buffer of fixed length or a memory-mapped file that supports random access.

The latter allows you to serve indexes from external memory, enabling you to optimize your server choices for indexing speed and serving costs. This can result in 20x cost reduction on AWS and other public clouds.

index.save("index.usearch")

loaded_copy = index.load("index.usearch")
view = Index.restore("index.usearch", view=True)

other_view = Index(ndim=..., metric=...)
other_view.view("index.usearch")

Exact vs. Approximate Search

Approximate search methods, such as HNSW, are predominantly used when an exact brute-force search becomes too resource-intensive. This typically occurs when you have millions of entries in a collection. For smaller collections, we offer a more direct approach with the search method.

from usearch.index import search, MetricKind, Matches, BatchMatches
import numpy as np

# Generate 10'000 random vectors with 1024 dimensions
vectors = np.random.rand(10_000, 1024).astype(np.float32)
vector = np.random.rand(1024).astype(np.float32)

one_in_many: Matches = search(vectors, vector, 50, MetricKind.L2sq, exact=True)
many_in_many: BatchMatches = search(vectors, vectors, 50, MetricKind.L2sq, exact=True)

If you pass the exact=True argument, the system bypasses indexing altogether and performs a brute-force search through the entire dataset using SIMD-optimized similarity metrics from SimSIMD. When compared to FAISS's IndexFlatL2 in Google Colab, USearch may offer up to a 20x performance improvement:

  • faiss.IndexFlatL2: 55.3 ms.
  • usearch.index.search: 2.54 ms.

User-Defined Metrics

While most vector search packages concentrate on just two metrics, "Inner Product distance" and "Euclidean distance", USearch allows arbitrary user-defined metrics. This flexibility allows you to customize your search for various applications, from computing geospatial coordinates with the rare Haversine distance to creating custom metrics for composite embeddings from multiple AI models, like joint image-text embeddings. You can use Numba, Cppyy, or PeachPy to define your custom metric even in Python:

from numba import cfunc, types, carray
from usearch.index import Index, MetricKind, MetricSignature, CompiledMetric

@cfunc(types.float32(types.CPointer(types.float32), types.CPointer(types.float32)))
def python_inner_product(a, b):
    a_array = carray(a, ndim)
    b_array = carray(b, ndim)
    c = 0.0
    for i in range(ndim):
        c += a_array[i] * b_array[i]
    return 1 - c

metric = CompiledMetric(pointer=python_inner_product.address, kind=MetricKind.IP, signature=MetricSignature.ArrayArray)
index = Index(ndim=ndim, metric=metric, dtype=np.float32)

Similar effect is even easier to achieve in C, C++, and Rust interfaces. Moreover, unlike older approaches indexing high-dimensional spaces, like KD-Trees and Locality Sensitive Hashing, HNSW doesn't require vectors to be identical in length. They only have to be comparable. So you can apply it in obscure applications, like searching for similar sets or fuzzy text matching, using GZip compression-ratio as a distance function.

Filtering and Predicate Functions

Sometimes you may want to cross-reference search-results against some external database or filter them based on some criteria. In most engines, you'd have to manually perform paging requests, successively filtering the results. In USearch you can simply pass a predicate function to the search method, which will be applied directly during graph traversal. In Rust that would look like this:

let is_odd = |key: Key| key % 2 == 1;
let query = vec![0.2, 0.1, 0.2, 0.1, 0.3];
let results = index.filtered_search(&query, 10, is_odd).unwrap();
assert!(
    results.keys.iter().all(|&key| key % 2 == 1),
    "All keys must be odd"
);

Memory Efficiency, Downcasting, and Quantization

Training a quantization model and dimension-reduction is a common approach to accelerate vector search. Those, however, are only sometimes reliable, can significantly affect the statistical properties of your data, and require regular adjustments if your distribution shifts. Instead, we have focused on high-precision arithmetic over low-precision downcasted vectors. The same index, and add and search operations will automatically down-cast or up-cast between f64_t, f32_t, f16_t, i8_t, and single-bit representations. You can use the following command to check, if hardware acceleration is enabled:

$ python -c 'from usearch.index import Index; print(Index(ndim=768, metric="cos", dtype="f16").hardware_acceleration)'
> sapphire
$ python -c 'from usearch.index import Index; print(Index(ndim=166, metric="tanimoto").hardware_acceleration)'
> ice

Using smaller numeric types will save you RAM needed to store the vectors, but you can also compress the neighbors lists forming our proximity graphs. By default, 32-bit uint32_t is used to enumerate those, which is not enough if you need to address over 4 Billion entries. For such cases we provide a custom uint40_t type, that will still be 37.5% more space-efficient than the commonly used 8-byte integers, and will scale up to 1 Trillion entries.

USearch uint40_t support

Indexes for Multi-Index Lookups

For larger workloads targeting billions or even trillions of vectors, parallel multi-index lookups become invaluable. Instead of constructing one extensive index, you can build multiple smaller ones and view them together.

from usearch.index import Indexes

multi_index = Indexes(
    indexes: Iterable[usearch.index.Index] = [...],
    paths: Iterable[os.PathLike] = [...],
    view: bool = False,
    threads: int = 0,
)
multi_index.search(...)

Clustering

Once the index is constructed, USearch can perform K-Nearest Neighbors Clustering much faster than standalone clustering libraries, like SciPy, UMap, and tSNE. Same for dimensionality reduction with PCA. Essentially, the Index itself can be seen as a clustering, allowing iterative deepening.

clustering = index.cluster(
    min_count=10, # Optional
    max_count=15, # Optional
    threads=..., # Optional
)

# Get the clusters and their sizes
centroid_keys, sizes = clustering.centroids_popularity

# Use Matplotlib to draw a histogram
clustering.plot_centroids_popularity()

# Export a NetworkX graph of the clusters
g = clustering.network

# Get members of a specific cluster
first_members = clustering.members_of(centroid_keys[0])

# Deepen into that cluster, splitting it into more parts, all the same arguments supported
sub_clustering = clustering.subcluster(min_count=..., max_count=...)

The resulting clustering isn't identical to K-Means or other conventional approaches but serves the same purpose. Alternatively, using Scikit-Learn on a 1 Million point dataset, one may expect queries to take anywhere from minutes to hours, depending on the number of clusters you want to highlight. For 50'000 clusters, the performance difference between USearch and conventional clustering methods may easily reach 100x.

Joins, One-to-One, One-to-Many, and Many-to-Many Mappings

One of the big questions these days is how AI will change the world of databases and data management. Most databases are still struggling to implement high-quality fuzzy search, and the only kind of joins they know are deterministic. A join differs from searching for every entry, requiring a one-to-one mapping banning collisions among separate search results.

Exact Search Fuzzy Search Semantic Search ?
Exact Join Fuzzy Join ? Semantic Join ??

Using USearch, one can implement sub-quadratic complexity approximate, fuzzy, and semantic joins. This can be useful in any fuzzy-matching tasks common to Database Management Software.

men = Index(...)
women = Index(...)
pairs: dict = men.join(women, max_proposals=0, exact=False)

Read more in the post: Combinatorial Stable Marriages for Semantic Search 💍

Functionality

By now, the core functionality is supported across all bindings. Broader functionality is ported per request. In some cases, like Batch operations, feature parity is meaningless, as the host language has full multi-threading capabilities and the USearch index structure is concurrent by design, so the users can implement batching/scheduling/load-balancing in the most optimal way for their applications.

C++ 11 Python 3 C 99 Java JavaScript Rust GoLang Swift
Add, search, remove
Save, load, view
User-defined metrics
Batch operations
Filter predicates
Joins
Variable-length vectors
4B+ capacities

Application Examples

USearch + UForm + UCall = Multimodal Semantic Search

AI has a growing number of applications, but one of the coolest classic ideas is to use it for Semantic Search. One can take an encoder model, like the multi-modal UForm, and a web-programming framework, like UCall, and build a text-to-image search platform in just 20 lines of Python.

from ucall import Server
from uform import get_model, Modality
from usearch.index import Index

import numpy as np
import PIL as pil

processors, models = get_model('unum-cloud/uform3-image-text-english-small')
model_text = models[Modality.TEXT_ENCODER]
model_image = models[Modality.IMAGE_ENCODER]
processor_text = processors[Modality.TEXT_ENCODER]
processor_image = processors[Modality.IMAGE_ENCODER]

server = Server()
index = Index(ndim=256)

@server
def add(key: int, photo: pil.Image.Image):
    image = processor_image(photo)
    vector = model_image(image)
    index.add(key, vector.flatten(), copy=True)

@server
def search(query: str) -> np.ndarray:
    tokens = processor_text(query)
    vector = model_text(tokens)
    matches = index.search(vector.flatten(), 3)
    return matches.keys

server.run()

Similar experiences can also be implemented in other languages and on the client side, removing the network latency. For Swift and iOS, check out the ashvardanian/SwiftSemanticSearch repository.

SwiftSemanticSearch demo Dog SwiftSemanticSearch demo with Flowers

A more complete demo with Streamlit is available on GitHub. We have pre-processed some commonly used datasets, cleaned the images, produced the vectors, and pre-built the index.

Dataset Modalities Images Download
Unsplash Images & Descriptions 25 K HuggingFace / Unum
Conceptual Captions Images & Descriptions 3 M HuggingFace / Unum
Arxiv Titles & Abstracts 2 M HuggingFace / Unum

USearch + RDKit = Molecular Search

Comparing molecule graphs and searching for similar structures is expensive and slow. It can be seen as a special case of the NP-Complete Subgraph Isomorphism problem. Luckily, domain-specific approximate methods exist. The one commonly used in Chemistry is to generate structures from SMILES and later hash them into binary fingerprints. The latter are searchable with binary similarity metrics, like the Tanimoto coefficient. Below is an example using the RDKit package.

from usearch.index import Index, MetricKind
from rdkit import Chem
from rdkit.Chem import AllChem

import numpy as np

molecules = [Chem.MolFromSmiles('CCOC'), Chem.MolFromSmiles('CCO')]
encoder = AllChem.GetRDKitFPGenerator()

fingerprints = np.vstack([encoder.GetFingerprint(x) for x in molecules])
fingerprints = np.packbits(fingerprints, axis=1)

index = Index(ndim=2048, metric=MetricKind.Tanimoto)
keys = np.arange(len(molecules))

index.add(keys, fingerprints)
matches = index.search(fingerprints, 10)

That method was used to build the "USearch Molecules", one of the largest Chem-Informatics datasets, containing 7 billion small molecules and 28 billion fingerprints.

USearch + POI Coordinates = GIS Applications

Similar to Vector and Molecule search, USearch can be used for Geospatial Information Systems. The Haversine distance is available out of the box, but you can also define more complex relationships, like the Vincenty formula, that accounts for the Earth's oblateness.

from numba import cfunc, types, carray
import math

# Define the dimension as 2 for latitude and longitude
ndim = 2

# Signature for the custom metric
signature = types.float32(
    types.CPointer(types.float32),
    types.CPointer(types.float32))

# WGS-84 ellipsoid parameters
a = 6378137.0  # major axis in meters
f = 1 / 298.257223563  # flattening
b = (1 - f) * a  # minor axis

def vincenty_distance(a_ptr, b_ptr):
    a_array = carray(a_ptr, ndim)
    b_array = carray(b_ptr, ndim)
    lat1, lon1, lat2, lon2 = a_array[0], a_array[1], b_array[0], b_array[1]
    L, U1, U2 = lon2 - lon1, math.atan((1 - f) * math.tan(lat1)), math.atan((1 - f) * math.tan(lat2))
    sinU1, cosU1, sinU2, cosU2 = math.sin(U1), math.cos(U1), math.sin(U2), math.cos(U2)
    lambda_, iterLimit = L, 100
    while iterLimit > 0:
        iterLimit -= 1
        sinLambda, cosLambda = math.sin(lambda_), math.cos(lambda_)
        sinSigma = math.sqrt((cosU2 * sinLambda) ** 2 + (cosU1 * sinU2 - sinU1 * cosU2 * cosLambda) ** 2)
        if sinSigma == 0: return 0.0  # Co-incident points
        cosSigma, sigma = sinU1 * sinU2 + cosU1 * cosU2 * cosLambda, math.atan2(sinSigma, cosSigma)
        sinAlpha, cos2Alpha = cosU1 * cosU2 * sinLambda / sinSigma, 1 - (cosU1 * cosU2 * sinLambda / sinSigma) ** 2
        cos2SigmaM = cosSigma - 2 * sinU1 * sinU2 / cos2Alpha if not math.isnan(cosSigma - 2 * sinU1 * sinU2 / cos2Alpha) else 0  # Equatorial line
        C = f / 16 * cos2Alpha * (4 + f * (4 - 3 * cos2Alpha))
        lambda_, lambdaP = L + (1 - C) * f * (sinAlpha * (sigma + C * sinSigma * (cos2SigmaM + C * cosSigma * (-1 + 2 * cos2SigmaM ** 2)))), lambda_
        if abs(lambda_ - lambdaP) <= 1e-12: break
    if iterLimit == 0: return float('nan')  # formula failed to converge
    u2 = cos2Alpha * (a ** 2 - b ** 2) / (b ** 2)
    A = 1 + u2 / 16384 * (4096 + u2 * (-768 + u2 * (320 - 175 * u2)))
    B = u2 / 1024 * (256 + u2 * (-128 + u2 * (74 - 47 * u2)))
    deltaSigma = B * sinSigma * (cos2SigmaM + B / 4 * (cosSigma * (-1 + 2 * cos2SigmaM ** 2) - B / 6 * cos2SigmaM * (-3 + 4 * sinSigma ** 2) * (-3 + 4 * cos2SigmaM ** 2)))
    s = b * A * (sigma - deltaSigma)
    return s / 1000.0  # Distance in kilometers

# Example usage:
index = Index(ndim=ndim, metric=CompiledMetric(
    pointer=vincenty_distance.address,
    kind=MetricKind.Haversine,
    signature=MetricSignature.ArrayArray,
))

Integrations & Users

Citations

@software{Vardanian_USearch_2023,
doi = {10.5281/zenodo.7949416},
author = {Vardanian, Ash},
title = {{USearch by Unum Cloud}},
url = {https://github.com/unum-cloud/usearch},
version = {2.13.4},
year = {2023},
month = oct,
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

usearch-2.13.4-cp312-cp312-win_arm64.whl (262.5 kB view details)

Uploaded CPython 3.12 Windows ARM64

usearch-2.13.4-cp312-cp312-win_amd64.whl (280.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

usearch-2.13.4-cp312-cp312-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

usearch-2.13.4-cp312-cp312-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

usearch-2.13.4-cp312-cp312-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

usearch-2.13.4-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.13.4-cp312-cp312-macosx_11_0_arm64.whl (362.8 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

usearch-2.13.4-cp312-cp312-macosx_10_9_x86_64.whl (375.5 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

usearch-2.13.4-cp312-cp312-macosx_10_9_universal2.whl (697.3 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.13.4-cp311-cp311-win_arm64.whl (261.4 kB view details)

Uploaded CPython 3.11 Windows ARM64

usearch-2.13.4-cp311-cp311-win_amd64.whl (279.5 kB view details)

Uploaded CPython 3.11 Windows x86-64

usearch-2.13.4-cp311-cp311-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

usearch-2.13.4-cp311-cp311-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

usearch-2.13.4-cp311-cp311-manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

usearch-2.13.4-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.13.4-cp311-cp311-macosx_11_0_arm64.whl (361.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

usearch-2.13.4-cp311-cp311-macosx_10_9_x86_64.whl (372.2 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

usearch-2.13.4-cp311-cp311-macosx_10_9_universal2.whl (693.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.13.4-cp310-cp310-win_arm64.whl (260.3 kB view details)

Uploaded CPython 3.10 Windows ARM64

usearch-2.13.4-cp310-cp310-win_amd64.whl (278.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

usearch-2.13.4-cp310-cp310-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

usearch-2.13.4-cp310-cp310-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

usearch-2.13.4-cp310-cp310-manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

usearch-2.13.4-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.13.4-cp310-cp310-macosx_11_0_arm64.whl (360.1 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

usearch-2.13.4-cp310-cp310-macosx_10_9_x86_64.whl (370.7 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

usearch-2.13.4-cp310-cp310-macosx_10_9_universal2.whl (690.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.13.4-cp39-cp39-win_arm64.whl (261.3 kB view details)

Uploaded CPython 3.9 Windows ARM64

usearch-2.13.4-cp39-cp39-win_amd64.whl (274.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

usearch-2.13.4-cp39-cp39-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

usearch-2.13.4-cp39-cp39-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

usearch-2.13.4-cp39-cp39-manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

usearch-2.13.4-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.13.4-cp39-cp39-macosx_11_0_arm64.whl (360.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

usearch-2.13.4-cp39-cp39-macosx_10_9_x86_64.whl (371.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

usearch-2.13.4-cp39-cp39-macosx_10_9_universal2.whl (691.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.13.4-cp38-cp38-win_amd64.whl (278.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

usearch-2.13.4-cp38-cp38-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

usearch-2.13.4-cp38-cp38-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

usearch-2.13.4-cp38-cp38-manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

usearch-2.13.4-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.13.4-cp38-cp38-macosx_11_0_arm64.whl (359.9 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

usearch-2.13.4-cp38-cp38-macosx_10_9_x86_64.whl (370.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

usearch-2.13.4-cp38-cp38-macosx_10_9_universal2.whl (690.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.13.4-cp37-cp37m-win_amd64.whl (279.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

usearch-2.13.4-cp37-cp37m-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

usearch-2.13.4-cp37-cp37m-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ARM64

usearch-2.13.4-cp37-cp37m-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

usearch-2.13.4-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.13.4-cp37-cp37m-macosx_10_9_x86_64.whl (368.0 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file usearch-2.13.4-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: usearch-2.13.4-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 262.5 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.4-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 ed828f4eb6db31497ccd353955762adfbcf3c273cac65836d30b5b632692f256
MD5 d8ce6e2fa4dbb3f8837d36767c2e6dca
BLAKE2b-256 258bcb2ffa16684d1e242b5ab6cc9a54d86718f399268023505cdcd3b8784ece

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: usearch-2.13.4-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 280.7 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.4-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 b97db4d439c9cb13d7c18b6a6be607ee232c8c99f2e9080314343202412e3c36
MD5 6032ba242acd7fe1a775a32c11f17b26
BLAKE2b-256 b6a7d7e187538d05db9183f42b30815b0975df93ffe5d9d8e09e17190ab6038b

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 538645240976c7fac2683add9354cb1a958e2467f0b784df8bfcefd979d722b4
MD5 9e6033d3383d2e0d6c22fa3581f7c4fc
BLAKE2b-256 697e5fcc2d632c45d4a46ae338d6d66db3e2ed4991280c1f09119dff18e9309b

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 497befca4f79f366ad4dd6ae0bc92683aa027a112251f6a87816f6c24fe96b2a
MD5 34c4f5b1594182c5431cc89ff88e3450
BLAKE2b-256 9a72bc757a1652d914075755a0deb4899bc30072ab20535bb16b47dcee49206e

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 81e9ac05bc13c4e933d3a0b52455b347cdf5cc2fc37c679ff91fd2c0969ea763
MD5 771bf3a633384e09a4aa8d7f0e4989ce
BLAKE2b-256 dbd2ecbc4820caaa93905e9c5f6f5034fcae36b3543df174ec4ca6fc72c02307

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 3c47c1a99eb9e86eeb8f49fb2157566f7a8dccd3e4d9243e1059006e55a28a1b
MD5 30c00a1b3a06b79137f3074357099f13
BLAKE2b-256 9d31937af88907ef8ee8f79802fd98df9625b98d7686a43f99eb2f4377061dfc

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 447cd9c06c503e15ea272c09f78f1b1d8a9b5291d2262d54b5225d3c76cf1cca
MD5 10dbc46d8778e9f3febc0c93ccbdacae
BLAKE2b-256 904b3d7114d5acefb3500e70f44629770524cac3b4396f0815ddc1d7828d2180

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f01bb425b78ea777a916cbb79fe52bd150562d7ec423713ef5fe933db5ff83b8
MD5 8645f7841142cc2c3c4869d2a459d406
BLAKE2b-256 442c657b47a19a3b5b98fd3b4b7dd1ae801853ca8920869f8b750019de835dc2

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 32453e9f1fc98692ceb081c61611e1df4e3be730208a26115b5744ea3748da67
MD5 67ef35e62126a77693b669b3171cfdc5
BLAKE2b-256 36fd58a06a4b14aabc6b1ca9e56e4648dba47b4e34fe78cef3ecde002e1c9f1b

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: usearch-2.13.4-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 261.4 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.4-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 9c6807919b25920509bdfc70364b2c03c4f679dbf2b50073c392ae2a8fbfc986
MD5 284086b56c87b0c251e776decf5d3aa2
BLAKE2b-256 ff3fe3f5cc4190795a1a26720f6e0222c0662ebab46a5ef0da5763fb36522798

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: usearch-2.13.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 279.5 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 a4b05c001af13e9f707c30fd6c714101706ca390ce0b035b01277dda31787bca
MD5 3a0da56f3334d6f0549bfbb6c6257aff
BLAKE2b-256 464ebc98e10375295a09df08dd4a2daa8e1d898ea4d84a0c271205786352d9d5

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d611e2636f707c4cf09bcb9d57044fb6331ef6b6cedafe163acead88d906ddeb
MD5 cd38053b4bea7b61c6b95b7662bae1cb
BLAKE2b-256 0b23cb0c9a19113f7741f5e02a954a768781eb865bdb39b7974a0f4259d48de2

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 edce5e21ff0e40c535dfdc6e8bacfcee19babef5a2673de7f06d4df6e536fbf7
MD5 6a6dbfc4b3b64818d92a7a0ab6329472
BLAKE2b-256 55696a77ddcf49633d061bec7cb045b128a1e5000d5537921a5af07a2f026744

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a242b13239dd2295f741c1af2ad6e1a1ba6ae9e142c55c8a25ba5edd5c1190f0
MD5 dc47f35f8e43299dfff591d306c03ef9
BLAKE2b-256 9142dad165e0b2b6073e9747c41299131a9122ad6ec0cbe57225bac128ef6698

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 8ba8d0dc2da397ae19a55043310df8547d9ee63690daedf027716ce8a06dfb65
MD5 0090325b59eae38be9d88d40d12fc12b
BLAKE2b-256 ebb62eca937587cf8ddae7d2c67974c19d54cf1ef01b52f54a1a16c6446982c1

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c7f5f00561704b152aedeeaac5e4626ac7a504c80fa1953d6b98552d52337f32
MD5 2fd0de1a6af19fedb6023ebaaef52fe4
BLAKE2b-256 c0879ec1d8c98826f4cb196b3f7a8ed10261cc5e93aa75e7c7ba356f1fcd532a

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5b6457fee0b538b18b2363af09e061552461de62ebe34759f8277c3cf23913f5
MD5 2449208c3ea4df639999da47915e7670
BLAKE2b-256 b7dd7e37a1d28b41f0cf5f1ff380900503818c880dc9fee562ca2d57f7ef58d4

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 72140f9ed94b6f45430eb692baae2eff00b1751ba7a12250a16f8742ab4439be
MD5 606effdd48739cc9e8b4fc16dda211d4
BLAKE2b-256 457b16e154cdf8bd73c7f2974d712e3a66370125b91cc71a39bae41145e9c071

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: usearch-2.13.4-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 260.3 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.4-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 1115c25018aecaa2b869a132d028d592428395886da5b81ab60a0be1fcc38728
MD5 df2e1030ecc1c252dca0e0020490596e
BLAKE2b-256 c1907f0d59b55036915a49dd015167cd3b653fda26e3817612fee5c4a3e2a69b

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: usearch-2.13.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 278.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 377ceaadc70a853b2d57b53ed7674b96b42b82750455a0445a0899ed33231dbb
MD5 bd54d41757ee5dd3cf43ba85ce683047
BLAKE2b-256 e225c61370719f71b1711f4b7cf0ed3d7d3b9435548ff705a82b2794c273b1fe

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 eafd8b2043500d39453f6f54122158955e96566b7c26151da6cdc38f5ea8dc5c
MD5 adc8c54ab887d346a0ad30c60cc67f30
BLAKE2b-256 04eb4ac8e15fe3ffcf765b2c1e782fb1e0ce63dc62b5a8fb6fe8245ab1bc7076

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 68b1283cdf7e1cc08877930644a1e520fb177eff09d4b4b9d41beed62f345fce
MD5 ac55750a36f2cd983869a0491fcc3950
BLAKE2b-256 1ad3ec79861773778ecaaf7fa10e8c4b23b2f13e997ae7c5b956e8f2c2b36e14

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7aa2d353dce7467c2104ce655bb9dc08a08a5633e1302d9de24f3f40c95a9b1a
MD5 164af4049bb5c8a40fcd5a71c9367e60
BLAKE2b-256 ff71a0cda553774d6d8a92917ef4240bbad974c1015e16d2094a7575a0cb6b93

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 aa8f911af3dc5b346d441ae139e9e906d649aeec047b0f4edf0696ad3c66d757
MD5 2e0f96f9627b87ef275e239e3cb3a41e
BLAKE2b-256 a362d8457c1019529abb889e5f26dcafe3689509a58a51e2448b76e4c7b52f3d

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d43eb2916b9fe6ef09cd23733767ba386a46de6b4bca2355755eaea303ae2000
MD5 c95993aba3962e773fa1b0f57ea9a1d4
BLAKE2b-256 bfa4e833fa89a2f93e364907a2f23ca0a703d1633b04d7e7af9ee5955d2ffdd8

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d68e4b6cc8f58135b6857f76a0a5544b9e0a77aefb89dd171b5670328ac2a3db
MD5 e405081a9653100a26ef0f08d6c74fbb
BLAKE2b-256 6d7345f2e8938d07fbd311f5a6fc9db9987f6fb0ed45b4439a62141d88048e4f

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 6b986301403e6ece2bd30385a0176c9baa29fb80f5604e998562d9eb1f081d11
MD5 aad89ba8345aca9ad01789de2b32a736
BLAKE2b-256 b63b4f0c285e1f2b23ad85aa456f73d377d2b431b5d8b2bf76f3e9e28d0b840c

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: usearch-2.13.4-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 261.3 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.4-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 f16dc30cde3c490df8d22f6806202cd122c6458ecdefb9597754dd36ae33cbc1
MD5 83ba23c134dfe26d2a4f131aec8220e8
BLAKE2b-256 b1869c6c77b9c2645cabb5f2763cf52a12758feb0af295995e743be13b240028

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: usearch-2.13.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 274.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 afd74d0ab6a54f7c75ecdde68554d845c97709bafab1e116198bfc8856c0ab80
MD5 7497ffda286370fcca42a0a31bf73b0d
BLAKE2b-256 aa0a94abe393a0c29b8a3bfedbd274834e80f1c7cd042d6d0782652c97e07215

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9412f525b61eaa12c1c3c0e1ed7838cce6e94275b4b33b5bc94a3f7127ae41b0
MD5 89278a8a15c7f1330e011401e4e4e272
BLAKE2b-256 f1df815aa93e4985bf53729764115ecc332fbba453d00cd503498d0c2192b3f9

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 fb71ab9bcbcad6a4fd30e35f0120fe450d8f0c53b42665b93c8a56d4e4ceea9c
MD5 8ad82569fb059b7fbb13d53c25160c83
BLAKE2b-256 5812384afa3a3dc2dd4a2f97ebb4fa8d0418055a8cded177835a960fc6417707

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 36cdad85dbcdcf2d4af9f47e10cedd121f3ffc87d23ef0b792f2b956c611b210
MD5 5bc881ccdf64c8263b4bdaccde0781ef
BLAKE2b-256 304ef01f1cfd2a9b964c530a4826d19f671bf6a08affdb0121afea576211bf1b

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 328611ad4f9f86b714b6492afec4e3ff807d8962ffda9443ec7a953a7bd39b79
MD5 99a21ac8dfda47077c768676b250f5f2
BLAKE2b-256 d64e00fb17931417478f1c4c2ad86f67e4802fc0a1258cc1cfe216d67d240ea7

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3139efb99030e8e5ba33a4af354d63c5991f48cbd9d009c458b0d92f72f4f98f
MD5 fdbfb0b1b9323b3e4f383a2c2264786b
BLAKE2b-256 171212fa9f3a9a775c2bedfaa9c35ee1c66e735db6c6defad6a57b2ba1e545b3

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e9c92218b713eb06a4f88c75ce19025f8d0439367dcbaed4ae46c8bd94cc6449
MD5 8203694056723ea082e917649e0631d3
BLAKE2b-256 6ae12f31a74e2c868b646eafbc2a6aee7302ad78305a6551b8f23c03591c6c63

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c4c264c8a2060f4e918926bcd16156d5b84dfc4a0948578e987b4ffdb18d18c5
MD5 7cae8a566251e5ae0751299db1b54171
BLAKE2b-256 4eefac7f72ea9ceccde1d0f1a0192181a4a2ca2eb17886fbbb5275aed726f89f

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: usearch-2.13.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 278.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4dcf29126b36331f00554f72df150086fcd69c92362eba2970de292ff6274066
MD5 329750790af853e311d3198741eb5b52
BLAKE2b-256 ffb314ade5aaa70aca2b92d1f46ee0c1e82d5c8b70f5747621d9492cc72eb84a

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 81ab0903265303b73ed909999bc6d5ab42ce7aa06ec4583df9fad7f417115b4a
MD5 c9f5a6a3fe25febfd134635b272e9766
BLAKE2b-256 43793c240166a3c97b6dacf9e9539d206635409dc28b6babca21fda67d0102ce

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 c961d09c4726c67662018acb8fbaf0cdadfe92e51a1b3cc74c4a74db89855eae
MD5 34ba2cbc50777d34900dae6a66adca75
BLAKE2b-256 bea45bc1d35d29a15beba831e21e5edaf29d5757855c410b1d0c13d001a228c8

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 72a20c7b089f89bfdc26caeb7414f6a2fda21fe465f3fa2b649be70e52d8779f
MD5 1cb49ec52b1f01f803182005ee8a4389
BLAKE2b-256 7a5175db6aab2c2bd118da90ad0d7d67eb26de99830ccf936939deaa2199e986

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 3db99c8c4402a0eda1c4902cac4d083dabcdfdad7ee716db3e990c1ffad1ec37
MD5 b182512305c306a8e54e76874146eca4
BLAKE2b-256 33396c3092b0ce0ae73598aca83e68cdc395884d0061f8be3d3a1c7e522484f3

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d96fd5fd8efdd175605abb0e5ef0086028b5c3b76b4892c1159fd199908edc17
MD5 0d4b8e1f1071fdc258093332b2564128
BLAKE2b-256 4823bec4c0760e5489ba8954188c764ccbb48cd91739f80a9ed96409b17c90b7

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 16292d867a0ac827b9290a0037a492d5addf900e3a52b46e4ac058b615639bac
MD5 8904dae076dc3ecd70fa91d083e1b06d
BLAKE2b-256 1ecb8418dd843ef433886218968ed0545c280441e360c01d504c4d1a38424ebc

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 78a502c7fc97859e2f8088911970801e54f93daca4fa4641e7291a3fa6618994
MD5 99be5f2bc74b612b9d553da6c74f18d9
BLAKE2b-256 5086d2df12625bf283eb65b56c1e6d738ff7681ec698b74f963d346da5bcb75d

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: usearch-2.13.4-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 279.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 5e92b395d399029aad7b8cdc5300028824bf732ab57b697682073fe96dcffeff
MD5 e370b4318068f7ca3fb8db818ec076a8
BLAKE2b-256 6eb8df531fa78294923cd10e8c99b832ee9cc298173ac27d304d23d3d9af7051

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 192b2a048417880e0fc0795fab405800d40a884afd3354014ccf0dc29e8dcda6
MD5 2eba9c062ae6a62ce3001db3cd82df7c
BLAKE2b-256 786a5e2713b3ed609e8641e22b53cc5ed746f00cfe0925ea3871c9f1d9bbcefa

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp37-cp37m-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp37-cp37m-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 e6d403e8a30e301b0cc18cddb1062081ba147eb70ac1d7427bf768e32f1dd892
MD5 19b1f55c61afdaf3d1ea79c63961949d
BLAKE2b-256 697752195f843df180a557d74254a672067175192ec9c49bbd905ebdb44ac0a6

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 87afa5439a6ab7939d81212114369aa9248dfc0788460d6ff829588b0b7a0098
MD5 81f6c127738a49121e5b997e00a7118c
BLAKE2b-256 62c260fd589d50c2e009dcf473c2e5f3df373ed159a654f83a0ab9f5f1b29f9f

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 2e4c9a7258566a2c4733fac4198c112f046d0b2665bee796082e6c4cdeeea39a
MD5 6359e2c2bf6f29bb48152b8adcc5757f
BLAKE2b-256 8c555810396f7c774d5583bb7415dbb3726cfa188f7d8a4875199820dfefeda5

See more details on using hashes here.

File details

Details for the file usearch-2.13.4-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.4-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b70c7ab8d635a7a8a6ba836d320ef97780e84ec799944bcb80567d02cf5992e5
MD5 020ced0e77a39fb0f02c181a55155c0b
BLAKE2b-256 08c17169578ad60aded6ca73b60471d208807d77a2e1048fdefc926a2ce19b81

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page