Skip to main content

Smaller & Faster Single-File Vector Search Engine from Unum

Project description

USearch

Smaller & Faster Single-File
Similarity Search Engine for Vectors & 🔜 Texts


Discord     LinkedIn     Twitter     Blog     GitHub

Spatial • Binary • Probabilistic • User-Defined Metrics
C++ 11Python 3JavaScriptJavaRustC 99Objective-CSwiftC#GoLangWolfram
Linux • MacOS • Windows • iOS • WebAssembly • SQLite3


Technical Insights and related articles:

Comparison with FAISS

FAISS is a widely recognized standard for high-performance vector search engines. USearch and FAISS both employ the same HNSW algorithm, but they differ significantly in their design principles. USearch is compact and broadly compatible without sacrificing performance, primarily focusing on user-defined metrics and fewer dependencies.

FAISS USearch Improvement
Indexing time ⁰
100 Million 96d f32, f16, i8 vectors 2.6 · 2.6 · 2.6 h 0.3 · 0.2 · 0.2 h 9.6 · 10.4 · 10.7 x
100 Million 1536d f32, f16, i8 vectors 5.0 · 4.1 · 3.8 h 2.1 · 1.1 · 0.8 h 2.3 · 3.6 · 4.4 x
Codebase length ¹ 84 K SLOC 3 K SLOC maintainable
Supported metrics ² 9 fixed metrics any metric extendible
Supported languages ³ C++, Python 10 languages portable
Supported ID types ⁴ 32-bit, 64-bit 32-bit, 40-bit, 64-bit efficient
Filtering ⁵ ban-lists any predicates composable
Required dependencies ⁶ BLAS, OpenMP - light-weight
Bindings ⁷ SWIG Native low-latency
Python binding size ⁸ ~ 10 MB < 1 MB deployable

Tested on Intel Sapphire Rapids, with the simplest inner-product distance, equivalent recall, and memory consumption while also providing far superior search speed. ¹ A shorter codebase of usearch/ over faiss/ makes the project easier to maintain and audit. ² User-defined metrics allow you to customize your search for various applications, from GIS to creating custom metrics for composite embeddings from multiple AI models or hybrid full-text and semantic search. ³ With USearch, you can reuse the same preconstructed index in various programming languages. ⁴ The 40-bit integer allows you to store 4B+ vectors without allocating 8 bytes for every neighbor reference in the proximity graph. ⁵ With USearch the index can be combined with arbitrary external containers, like Bloom filters or third-party databases, to filter out irrelevant keys during index traversal. ⁶ Lack of obligatory dependencies makes USearch much more portable. ⁷ Native bindings introduce lower call latencies than more straightforward approaches. ⁸ Lighter bindings make downloads and deployments faster.

Base functionality is identical to FAISS, and the interface must be familiar if you have ever investigated Approximate Nearest Neighbors search:

# pip install numpy usearch

import numpy as np
from usearch.index import Index

index = Index(ndim=3)

vector = np.array([0.2, 0.6, 0.4])
index.add(42, vector)

matches = index.search(vector, 10)

assert matches[0].key == 42
assert matches[0].distance <= 0.001
assert np.allclose(index[42], vector, atol=0.1) # Ensure high tolerance in mixed-precision comparisons

More settings are always available, and the API is designed to be as flexible as possible. The default storage/quantization level is hardware-dependant for efficiency, but f16 is recommended for most modern CPUs.

index = Index(
    ndim=3, # Define the number of dimensions in input vectors
    metric='cos', # Choose 'l2sq', 'ip', 'haversine' or other metric, default = 'cos'
    dtype='f16', # Store as 'f64', 'f32', 'f16', 'i8', 'b1'..., default = None
    connectivity=16, # Optional: Limit number of neighbors per graph node
    expansion_add=128, # Optional: Control the recall of indexing
    expansion_search=64, # Optional: Control the quality of the search
    multi=False, # Optional: Allow multiple vectors per key, default = False
)

Serialization & Serving Index from Disk

USearch supports multiple forms of serialization:

  • Into a file defined with a path.
  • Into a stream defined with a callback, serializing or reconstructing incrementally.
  • Into a buffer of fixed length or a memory-mapped file that supports random access.

The latter allows you to serve indexes from external memory, enabling you to optimize your server choices for indexing speed and serving costs. This can result in 20x cost reduction on AWS and other public clouds.

index.save("index.usearch")

loaded_copy = index.load("index.usearch")
view = Index.restore("index.usearch", view=True)

other_view = Index(ndim=..., metric=...)
other_view.view("index.usearch")

Exact vs. Approximate Search

Approximate search methods, such as HNSW, are predominantly used when an exact brute-force search becomes too resource-intensive. This typically occurs when you have millions of entries in a collection. For smaller collections, we offer a more direct approach with the search method.

from usearch.index import search, MetricKind, Matches, BatchMatches
import numpy as np

# Generate 10'000 random vectors with 1024 dimensions
vectors = np.random.rand(10_000, 1024).astype(np.float32)
vector = np.random.rand(1024).astype(np.float32)

one_in_many: Matches = search(vectors, vector, 50, MetricKind.L2sq, exact=True)
many_in_many: BatchMatches = search(vectors, vectors, 50, MetricKind.L2sq, exact=True)

If you pass the exact=True argument, the system bypasses indexing altogether and performs a brute-force search through the entire dataset using SIMD-optimized similarity metrics from SimSIMD. When compared to FAISS's IndexFlatL2 in Google Colab, USearch may offer up to a 20x performance improvement:

  • faiss.IndexFlatL2: 55.3 ms.
  • usearch.index.search: 2.54 ms.

User-Defined Metrics

While most vector search packages concentrate on just two metrics, "Inner Product distance" and "Euclidean distance", USearch allows arbitrary user-defined metrics. This flexibility allows you to customize your search for various applications, from computing geospatial coordinates with the rare Haversine distance to creating custom metrics for composite embeddings from multiple AI models, like joint image-text embeddings. You can use Numba, Cppyy, or PeachPy to define your custom metric even in Python:

from numba import cfunc, types, carray
from usearch.index import Index, MetricKind, MetricSignature, CompiledMetric

@cfunc(types.float32(types.CPointer(types.float32), types.CPointer(types.float32)))
def python_inner_product(a, b):
    a_array = carray(a, ndim)
    b_array = carray(b, ndim)
    c = 0.0
    for i in range(ndim):
        c += a_array[i] * b_array[i]
    return 1 - c

metric = CompiledMetric(pointer=python_inner_product.address, kind=MetricKind.IP, signature=MetricSignature.ArrayArray)
index = Index(ndim=ndim, metric=metric, dtype=np.float32)

Similar effect is even easier to achieve in C, C++, and Rust interfaces. Moreover, unlike older approaches indexing high-dimensional spaces, like KD-Trees and Locality Sensitive Hashing, HNSW doesn't require vectors to be identical in length. They only have to be comparable. So you can apply it in obscure applications, like searching for similar sets or fuzzy text matching, using GZip compression-ratio as a distance function.

Filtering and Predicate Functions

Sometimes you may want to cross-reference search-results against some external database or filter them based on some criteria. In most engines, you'd have to manually perform paging requests, successively filtering the results. In USearch you can simply pass a predicate function to the search method, which will be applied directly during graph traversal. In Rust that would look like this:

let is_odd = |key: Key| key % 2 == 1;
let query = vec![0.2, 0.1, 0.2, 0.1, 0.3];
let results = index.filtered_search(&query, 10, is_odd).unwrap();
assert!(
    results.keys.iter().all(|&key| key % 2 == 1),
    "All keys must be odd"
);

Memory Efficiency, Downcasting, and Quantization

Training a quantization model and dimension-reduction is a common approach to accelerate vector search. Those, however, are only sometimes reliable, can significantly affect the statistical properties of your data, and require regular adjustments if your distribution shifts. Instead, we have focused on high-precision arithmetic over low-precision downcasted vectors. The same index, and add and search operations will automatically down-cast or up-cast between f64_t, f32_t, f16_t, i8_t, and single-bit b1x8_t representations. You can use the following command to check, if hardware acceleration is enabled:

$ python -c 'from usearch.index import Index; print(Index(ndim=768, metric="cos", dtype="f16").hardware_acceleration)'
> sapphire
$ python -c 'from usearch.index import Index; print(Index(ndim=166, metric="tanimoto").hardware_acceleration)'
> ice

In most cases, it's recommended to use half-precision floating-point numbers on modern hardware. When quantization is enabled, the "get"-like functions won't be able to recover the original data, so you may want to replicate the original vectors elsewhere. When quantizing to i8_t integers, note that it's only valid for cosine-like metrics. As part of the quantization process, the vectors are normalized to unit length and later scaled to [-127, 127] range to occupy the full 8-bit range. When quantizing to b1x8_t single-bit representations, note that it's only valid for binary metrics like Jaccard, Hamming, etc. As part of the quantization process, the scalar components greater than zero are set to true, and the rest to false.

USearch uint40_t support

Using smaller numeric types will save you RAM needed to store the vectors, but you can also compress the neighbors lists forming our proximity graphs. By default, 32-bit uint32_t is used to enumerate those, which is not enough if you need to address over 4 Billion entries. For such cases we provide a custom uint40_t type, that will still be 37.5% more space-efficient than the commonly used 8-byte integers, and will scale up to 1 Trillion entries.

Indexes for Multi-Index Lookups

For larger workloads targeting billions or even trillions of vectors, parallel multi-index lookups become invaluable. Instead of constructing one extensive index, you can build multiple smaller ones and view them together.

from usearch.index import Indexes

multi_index = Indexes(
    indexes: Iterable[usearch.index.Index] = [...],
    paths: Iterable[os.PathLike] = [...],
    view: bool = False,
    threads: int = 0,
)
multi_index.search(...)

Clustering

Once the index is constructed, USearch can perform K-Nearest Neighbors Clustering much faster than standalone clustering libraries, like SciPy, UMap, and tSNE. Same for dimensionality reduction with PCA. Essentially, the Index itself can be seen as a clustering, allowing iterative deepening.

clustering = index.cluster(
    min_count=10, # Optional
    max_count=15, # Optional
    threads=..., # Optional
)

# Get the clusters and their sizes
centroid_keys, sizes = clustering.centroids_popularity

# Use Matplotlib to draw a histogram
clustering.plot_centroids_popularity()

# Export a NetworkX graph of the clusters
g = clustering.network

# Get members of a specific cluster
first_members = clustering.members_of(centroid_keys[0])

# Deepen into that cluster, splitting it into more parts, all the same arguments supported
sub_clustering = clustering.subcluster(min_count=..., max_count=...)

The resulting clustering isn't identical to K-Means or other conventional approaches but serves the same purpose. Alternatively, using Scikit-Learn on a 1 Million point dataset, one may expect queries to take anywhere from minutes to hours, depending on the number of clusters you want to highlight. For 50'000 clusters, the performance difference between USearch and conventional clustering methods may easily reach 100x.

Joins, One-to-One, One-to-Many, and Many-to-Many Mappings

One of the big questions these days is how AI will change the world of databases and data management. Most databases are still struggling to implement high-quality fuzzy search, and the only kind of joins they know are deterministic. A join differs from searching for every entry, requiring a one-to-one mapping banning collisions among separate search results.

Exact Search Fuzzy Search Semantic Search ?
Exact Join Fuzzy Join ? Semantic Join ??

Using USearch, one can implement sub-quadratic complexity approximate, fuzzy, and semantic joins. This can be useful in any fuzzy-matching tasks common to Database Management Software.

men = Index(...)
women = Index(...)
pairs: dict = men.join(women, max_proposals=0, exact=False)

Read more in the post: Combinatorial Stable Marriages for Semantic Search 💍

Functionality

By now, the core functionality is supported across all bindings. Broader functionality is ported per request. In some cases, like Batch operations, feature parity is meaningless, as the host language has full multi-threading capabilities and the USearch index structure is concurrent by design, so the users can implement batching/scheduling/load-balancing in the most optimal way for their applications.

C++ 11 Python 3 C 99 Java JavaScript Rust GoLang Swift
Add, search, remove
Save, load, view
User-defined metrics
Batch operations
Filter predicates
Joins
Variable-length vectors
4B+ capacities

Application Examples

USearch + UForm + UCall = Multimodal Semantic Search

AI has a growing number of applications, but one of the coolest classic ideas is to use it for Semantic Search. One can take an encoder model, like the multi-modal UForm, and a web-programming framework, like UCall, and build a text-to-image search platform in just 20 lines of Python.

from ucall import Server
from uform import get_model, Modality
from usearch.index import Index

import numpy as np
import PIL as pil

processors, models = get_model('unum-cloud/uform3-image-text-english-small')
model_text = models[Modality.TEXT_ENCODER]
model_image = models[Modality.IMAGE_ENCODER]
processor_text = processors[Modality.TEXT_ENCODER]
processor_image = processors[Modality.IMAGE_ENCODER]

server = Server()
index = Index(ndim=256)

@server
def add(key: int, photo: pil.Image.Image):
    image = processor_image(photo)
    vector = model_image(image)
    index.add(key, vector.flatten(), copy=True)

@server
def search(query: str) -> np.ndarray:
    tokens = processor_text(query)
    vector = model_text(tokens)
    matches = index.search(vector.flatten(), 3)
    return matches.keys

server.run()

Similar experiences can also be implemented in other languages and on the client side, removing the network latency. For Swift and iOS, check out the ashvardanian/SwiftSemanticSearch repository.

SwiftSemanticSearch demo Dog SwiftSemanticSearch demo with Flowers

A more complete demo with Streamlit is available on GitHub. We have pre-processed some commonly used datasets, cleaned the images, produced the vectors, and pre-built the index.

Dataset Modalities Images Download
Unsplash Images & Descriptions 25 K HuggingFace / Unum
Conceptual Captions Images & Descriptions 3 M HuggingFace / Unum
Arxiv Titles & Abstracts 2 M HuggingFace / Unum

USearch + RDKit = Molecular Search

Comparing molecule graphs and searching for similar structures is expensive and slow. It can be seen as a special case of the NP-Complete Subgraph Isomorphism problem. Luckily, domain-specific approximate methods exist. The one commonly used in Chemistry is to generate structures from SMILES and later hash them into binary fingerprints. The latter are searchable with binary similarity metrics, like the Tanimoto coefficient. Below is an example using the RDKit package.

from usearch.index import Index, MetricKind
from rdkit import Chem
from rdkit.Chem import AllChem

import numpy as np

molecules = [Chem.MolFromSmiles('CCOC'), Chem.MolFromSmiles('CCO')]
encoder = AllChem.GetRDKitFPGenerator()

fingerprints = np.vstack([encoder.GetFingerprint(x) for x in molecules])
fingerprints = np.packbits(fingerprints, axis=1)

index = Index(ndim=2048, metric=MetricKind.Tanimoto)
keys = np.arange(len(molecules))

index.add(keys, fingerprints)
matches = index.search(fingerprints, 10)

That method was used to build the "USearch Molecules", one of the largest Chem-Informatics datasets, containing 7 billion small molecules and 28 billion fingerprints.

USearch + POI Coordinates = GIS Applications

Similar to Vector and Molecule search, USearch can be used for Geospatial Information Systems. The Haversine distance is available out of the box, but you can also define more complex relationships, like the Vincenty formula, that accounts for the Earth's oblateness.

from numba import cfunc, types, carray
import math

# Define the dimension as 2 for latitude and longitude
ndim = 2

# Signature for the custom metric
signature = types.float32(
    types.CPointer(types.float32),
    types.CPointer(types.float32))

# WGS-84 ellipsoid parameters
a = 6378137.0  # major axis in meters
f = 1 / 298.257223563  # flattening
b = (1 - f) * a  # minor axis

def vincenty_distance(a_ptr, b_ptr):
    a_array = carray(a_ptr, ndim)
    b_array = carray(b_ptr, ndim)
    lat1, lon1, lat2, lon2 = a_array[0], a_array[1], b_array[0], b_array[1]
    L, U1, U2 = lon2 - lon1, math.atan((1 - f) * math.tan(lat1)), math.atan((1 - f) * math.tan(lat2))
    sinU1, cosU1, sinU2, cosU2 = math.sin(U1), math.cos(U1), math.sin(U2), math.cos(U2)
    lambda_, iterLimit = L, 100
    while iterLimit > 0:
        iterLimit -= 1
        sinLambda, cosLambda = math.sin(lambda_), math.cos(lambda_)
        sinSigma = math.sqrt((cosU2 * sinLambda) ** 2 + (cosU1 * sinU2 - sinU1 * cosU2 * cosLambda) ** 2)
        if sinSigma == 0: return 0.0  # Co-incident points
        cosSigma, sigma = sinU1 * sinU2 + cosU1 * cosU2 * cosLambda, math.atan2(sinSigma, cosSigma)
        sinAlpha, cos2Alpha = cosU1 * cosU2 * sinLambda / sinSigma, 1 - (cosU1 * cosU2 * sinLambda / sinSigma) ** 2
        cos2SigmaM = cosSigma - 2 * sinU1 * sinU2 / cos2Alpha if not math.isnan(cosSigma - 2 * sinU1 * sinU2 / cos2Alpha) else 0  # Equatorial line
        C = f / 16 * cos2Alpha * (4 + f * (4 - 3 * cos2Alpha))
        lambda_, lambdaP = L + (1 - C) * f * (sinAlpha * (sigma + C * sinSigma * (cos2SigmaM + C * cosSigma * (-1 + 2 * cos2SigmaM ** 2)))), lambda_
        if abs(lambda_ - lambdaP) <= 1e-12: break
    if iterLimit == 0: return float('nan')  # formula failed to converge
    u2 = cos2Alpha * (a ** 2 - b ** 2) / (b ** 2)
    A = 1 + u2 / 16384 * (4096 + u2 * (-768 + u2 * (320 - 175 * u2)))
    B = u2 / 1024 * (256 + u2 * (-128 + u2 * (74 - 47 * u2)))
    deltaSigma = B * sinSigma * (cos2SigmaM + B / 4 * (cosSigma * (-1 + 2 * cos2SigmaM ** 2) - B / 6 * cos2SigmaM * (-3 + 4 * sinSigma ** 2) * (-3 + 4 * cos2SigmaM ** 2)))
    s = b * A * (sigma - deltaSigma)
    return s / 1000.0  # Distance in kilometers

# Example usage:
index = Index(ndim=ndim, metric=CompiledMetric(
    pointer=vincenty_distance.address,
    kind=MetricKind.Haversine,
    signature=MetricSignature.ArrayArray,
))

Integrations & Users

Citations

@software{Vardanian_USearch_2023,
doi = {10.5281/zenodo.7949416},
author = {Vardanian, Ash},
title = {{USearch by Unum Cloud}},
url = {https://github.com/unum-cloud/usearch},
version = {2.13.5},
year = {2023},
month = oct,
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

usearch-2.13.5-cp312-cp312-win_arm64.whl (262.2 kB view details)

Uploaded CPython 3.12 Windows ARM64

usearch-2.13.5-cp312-cp312-win_amd64.whl (281.8 kB view details)

Uploaded CPython 3.12 Windows x86-64

usearch-2.13.5-cp312-cp312-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

usearch-2.13.5-cp312-cp312-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

usearch-2.13.5-cp312-cp312-manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

usearch-2.13.5-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.13.5-cp312-cp312-macosx_11_0_arm64.whl (363.1 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

usearch-2.13.5-cp312-cp312-macosx_10_9_x86_64.whl (375.6 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

usearch-2.13.5-cp312-cp312-macosx_10_9_universal2.whl (697.2 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.13.5-cp311-cp311-win_arm64.whl (261.0 kB view details)

Uploaded CPython 3.11 Windows ARM64

usearch-2.13.5-cp311-cp311-win_amd64.whl (280.5 kB view details)

Uploaded CPython 3.11 Windows x86-64

usearch-2.13.5-cp311-cp311-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

usearch-2.13.5-cp311-cp311-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

usearch-2.13.5-cp311-cp311-manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

usearch-2.13.5-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.13.5-cp311-cp311-macosx_11_0_arm64.whl (361.6 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

usearch-2.13.5-cp311-cp311-macosx_10_9_x86_64.whl (372.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

usearch-2.13.5-cp311-cp311-macosx_10_9_universal2.whl (693.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.13.5-cp310-cp310-win_arm64.whl (260.1 kB view details)

Uploaded CPython 3.10 Windows ARM64

usearch-2.13.5-cp310-cp310-win_amd64.whl (279.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

usearch-2.13.5-cp310-cp310-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

usearch-2.13.5-cp310-cp310-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

usearch-2.13.5-cp310-cp310-manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

usearch-2.13.5-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.13.5-cp310-cp310-macosx_11_0_arm64.whl (360.6 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

usearch-2.13.5-cp310-cp310-macosx_10_9_x86_64.whl (370.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

usearch-2.13.5-cp310-cp310-macosx_10_9_universal2.whl (691.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.13.5-cp39-cp39-win_arm64.whl (261.0 kB view details)

Uploaded CPython 3.9 Windows ARM64

usearch-2.13.5-cp39-cp39-win_amd64.whl (275.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

usearch-2.13.5-cp39-cp39-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

usearch-2.13.5-cp39-cp39-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

usearch-2.13.5-cp39-cp39-manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

usearch-2.13.5-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.13.5-cp39-cp39-macosx_11_0_arm64.whl (360.7 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

usearch-2.13.5-cp39-cp39-macosx_10_9_x86_64.whl (370.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

usearch-2.13.5-cp39-cp39-macosx_10_9_universal2.whl (691.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.13.5-cp38-cp38-win_amd64.whl (279.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

usearch-2.13.5-cp38-cp38-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

usearch-2.13.5-cp38-cp38-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

usearch-2.13.5-cp38-cp38-manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

usearch-2.13.5-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.13.5-cp38-cp38-macosx_11_0_arm64.whl (360.4 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

usearch-2.13.5-cp38-cp38-macosx_10_9_x86_64.whl (370.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

usearch-2.13.5-cp38-cp38-macosx_10_9_universal2.whl (690.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.13.5-cp37-cp37m-win_amd64.whl (280.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

usearch-2.13.5-cp37-cp37m-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

usearch-2.13.5-cp37-cp37m-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ARM64

usearch-2.13.5-cp37-cp37m-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

usearch-2.13.5-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.13.5-cp37-cp37m-macosx_10_9_x86_64.whl (368.0 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file usearch-2.13.5-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: usearch-2.13.5-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 262.2 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.5-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 8af89c77f013da6338037a3a987c135f0f8821b0cf6b29efb4e30ddca646354c
MD5 3c19bd112881ffeed7cd1e51369b3d9b
BLAKE2b-256 8d9bb577131efd1897549a8df6fb09c544d128ca3ad301ec3742f8c44b510c80

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: usearch-2.13.5-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 281.8 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.5-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 e811f1cc6157cf756d87b3d22b2b9ea224f9fecfe59218589f81980c3e94184f
MD5 f005a588035f4ff689b174cf8e8421e2
BLAKE2b-256 bb002b723962750dc1f0863bedcb660960bfbeefb2bbbc1d5f19b66015e3adef

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 6eb71bbaca7aea78d485df4e8f79088f2b918254410472fb79f578ca7eb791a0
MD5 e2b74aeb05424bdfc7ce8d1bdb8c8ac2
BLAKE2b-256 9e688ba64a62e5a478003c0698994e92b31824c5f87257b62b3bcfbde1500c2b

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 c5aab7e80d8b2fc90c60bca9bd457f0a3ca075e8d5fdbca3d2e03a26e3d39655
MD5 813244f01095a559f86784698f25092a
BLAKE2b-256 f1c70a3231815d812d62ef53f510b2d945be560c405259da2b564560e363d6aa

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 43cda77a30665a66efa8ba41e4b209a3dd926ff94d003ca4c9947971f3cd3bf9
MD5 b3957e28ea1dc767de6514f8168b4575
BLAKE2b-256 455f364d52eeed1003b3b9da505c7e8c9cf26ad73d1fbe3dfb6fb883e76dbfd3

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c28ba0adda9352c9b9f57f31d2ba90c0f387a894667881d34afa07a02c9df1a2
MD5 1c555bb664feba29c5e15cb0cc831811
BLAKE2b-256 40fd14eaefedeac932cec91fd747b5a372ac312ec1521e8abef6fbe83f40b273

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8aaa8c96547a1e93c1d13dc52f49439ef6548654aa9d6e6d028009afc16ded7f
MD5 6e3237f10084e023f93e4a1983a5d65b
BLAKE2b-256 18c67538e842f83a58b45dd8d82f0ec188b95e316b0ce5878b61363987b9d196

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 437f5f0dd00a5056aead64eea66682e94b42cb37e0eb3019248dab8d8f9b25e2
MD5 17dded9a60946a3fb4e011994dbd4a2e
BLAKE2b-256 804c149c06539757bdcd718c714dade2110906e8a39ec3a743ffe4b9986f63d1

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 88ec8babe2b298e0b697dad44db25a46c080005127b98c59e51db542ccce4892
MD5 bd78802e3259f206a0a86c99622f3554
BLAKE2b-256 302d7c6d055ed92c909a3be161fc83a9157f9557634f01f5ba0985b7bef1cc86

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: usearch-2.13.5-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 261.0 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.5-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 3d7652b3ae2395dc0d8818208676bf0bb053f1b78d85f891e8577e5ef0e536db
MD5 07e3a30015c94e522bba2b3ff55c7549
BLAKE2b-256 f0526792a74cf4f5247cf1bd9385e03adc40330538f19bc40366cc73d8e0df0c

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: usearch-2.13.5-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 280.5 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 300207c08d426ba8bcd62b4f0c2a47dc2d4b22ed98735ae19fd6542e4247a6d7
MD5 4fc5d0a1f10045ded3e23a208cbd5635
BLAKE2b-256 6ce093613a3c3a5c96b86a7b0427e05f5cb05d7b3373375cd80d098616824b13

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5fd1d5a42d5c8d90c92129a8185cdb7435efe957d8fda4a29e7f071d54769602
MD5 103cd8400fec7f16cdd067c52fdbea2f
BLAKE2b-256 980a03123e818b22cfdd9ae8c12bdbfe85e9aefbb5c6794c427efd2930bbf979

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 2674021fac5bada0a28480f5cd3801dd4b9ebb99dc224c28d67b9c4f2ade14b0
MD5 e4158467ccfb0e5ab3c9d479678ae0f9
BLAKE2b-256 5454e27419120d3de2c36dcbac42fd9e709ca9cdeea228f2f4f7d191cba38aba

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f677f295824b6971f1d250fa596774b0860587d7555901b6bc80424aafb45fb1
MD5 4ee15a27f81a37b27407c662a1966334
BLAKE2b-256 0bbf37c04ebed66d6e36f2046be0e9efe7f20035f7b8f79bbb683be2858130c7

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 bd30194d56e8b07ac31555ef0c7af19b9e5cb8d35d5f6e43118617aefd7b055a
MD5 2911fd9068e03d2c24ed28bc097faecb
BLAKE2b-256 0d13467882fe08061ffb68de49ff207379f991733e96dbfb6a0f7e11b3b9067c

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 93954f7083282ef922f7644095211fa67f4ff9013ab333e18ddf63eb99ef55c9
MD5 be149267ce0f482d489787d38485c145
BLAKE2b-256 b337f6bbb57bad7ae4faaaee309b31d533e5576d7b79196334ffe9a8d848cc7d

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 29708b851ed5badf31609feca0b58c2cec482feea5d6d02da34dbe9784dd73e2
MD5 9d0e0b6b99a155c68933cd7d4e25e4c3
BLAKE2b-256 3dea0d425894bde86d0a8886f21343f016c6ecceedc1a15425ba0a3e4ca98d26

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ed1eca0cca1025e5bac5a3d1e907e424d7be66b7589b132b5e408f4d3f30d71a
MD5 b857048ca44fa68265e4604c90437a64
BLAKE2b-256 afbbb6499c5ac84b83ba1a878af1722748b98594a6f3a59388b094ff5fb29fce

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: usearch-2.13.5-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 260.1 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.5-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 179d520d42a92ca81d4fbff5e7a902badba103102d21cba84e7b7bb7b14f8455
MD5 88bce5a826324dd3bede5193e2b6d544
BLAKE2b-256 c474be65ed8ca47f41804c3761c074c2ed21dc8b2efd538dcefde92c90db41af

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: usearch-2.13.5-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 279.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 592bb77cc3eda9a6bd63c7bd76a42f0405998e25c4c854332d7d629feb6ef494
MD5 9316f4124de9bd4bc056ab1516afdd62
BLAKE2b-256 e0d773eb1168e8a4c827189bd6da5793cb8a4ae49bb4fe05c84dd0d21d32d94e

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 554b1d233b1ac8ca83595bad6cad5a33147af49a2c18fb1d0c9034b6fda94b41
MD5 a4c3461c9092aec86f92ddd0116fdc42
BLAKE2b-256 2e44be14011378e0aea7970188a50aea00be2691e4aab6454cfd0396a64915c5

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 57aa99768b27292c1cc8ad7d30589ae6b16c85ca6b512d2335b51d53ed436715
MD5 4ba40675fc3fbd55eb293200afcdc53c
BLAKE2b-256 74f5cec53be7f14439c57c9c296280c648f7381c8bd7bb347756fa15cfdd2932

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 29db1b83a9c0d537ca82018e4d38a0b27f50e8fb417a0ca6954e8785651a1b19
MD5 87f4f6ae6177c687275a7a6450be62a1
BLAKE2b-256 b42688444b2a4de1bdd948d8bdd467e3dac841f2d08e4386241d3b09823c11e0

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 83a72b2915e8b08d3085329369cb81b17c5afc432bee24f51fec56814a73f4cd
MD5 32e760154d82ae4d890a69e6ca8a3188
BLAKE2b-256 fe36a710f1308199e177b03f14e70b403eef65ae23e1229f35c84b0d121bf90c

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0eedfb3cd7e40a9326721dbb3de742c4c6ce44756307631507437312a3db3937
MD5 fb118535e950024f5c9cad6f2c45f384
BLAKE2b-256 8e457a39d1bdbdbd97956f53f86e446758b6ad1d27b41638fbc82e17e66eaeb2

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 96088bc4c34a99e22cd9e9900dad64176a04b20738c22ca0de79d909572a1a64
MD5 eea7aa2bde5361a0dc9564da43c03154
BLAKE2b-256 0d6fc2dda5a6c12ea782c5255286bc32cf54ea9d16edbeec6266893b3ddc3b02

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 fa4ae17eb204780f892fb7daa417a5c5371d0d91b41065045f95c93d039ac8ed
MD5 76526c3b5710237d1642d9034ce16de1
BLAKE2b-256 38454684c8a4f3a77907314b088565f2756e8f7215230c19503c609120a622ac

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: usearch-2.13.5-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 261.0 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.5-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 afa3770cd99357bed1077f646d0c2167ef75655051fe7c431a4bf6bcbabae565
MD5 a0dd9a0819ecf18a28be57900befe50d
BLAKE2b-256 f73975000138eb9e6523d04b6221ecf812d9a33202f6662bc2eb9b84104f22e5

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: usearch-2.13.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 275.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9ab2df7129bb1ae35503bd076c3ecd853aff4f2df7ee94704aa9af63266e3616
MD5 ba6926b184eaf4fe1ce8d8adab2a61bb
BLAKE2b-256 6acbd748b50a56d48c1f4b83cb4a1e7f12dfd14be2bfa008019483cc0accc905

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a48bdf1c09491699f49dbd72a96417670af8b0df7aba478fb7145f45d0f70306
MD5 3ad5d99b0e103e5a020fe9ec8d03a483
BLAKE2b-256 19bddd76dca4068f10dc7f53c70ac3ca6548084ecdca19c37561fe7fd5f76e77

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 3d523131d322e8395fae7dceae7730dc0ee1df4ab0de56d67ef8785fc66e8d91
MD5 71b8215fabc37bceb2f812da7c70116c
BLAKE2b-256 8df7b2888b1f9976aa6130de2d6fbc018ec1b4d4392e7066a414276e01fef196

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 9b02591b8065794ec01ce905b9efb2a6524cda316aa2968be18deec85108c5a7
MD5 52e29f3e9ca8e657f3353a85c33a809a
BLAKE2b-256 ef5ee8a4ddfe99254e24dc375890d1fb8ee3e9ddb081f74323f1ed8a9581c210

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 1de7fe8043c57e34cc024376fdd2a0a3decdd7540e6f7b88eaa8d334d6ff07a8
MD5 1763c68e34eb462e0b5cf65308b8d04c
BLAKE2b-256 b4b15b9a337147e35ef5e57240ce61839d113fc322523222379e9eaa6a1646fc

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 98423d56faa7dfd7872ee37583788530b9efcbddcf144015edf61ca781d2c163
MD5 3c3eb33f52293920fd74c1e357525894
BLAKE2b-256 c84982292c02c6add8b14503d71f1b49322974912561a4f5ced13564420c183d

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 683e06da5ea6c207db373c7418a7d3aaee3f9f19494d0f0c06d2ca74058819f3
MD5 c3f3a84c830ea04bbb983b85b09e204f
BLAKE2b-256 989e4102723c30235d45b70e108d1f582a5af3ff99b3c9c789426dae91d3af56

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e36892106d4c373c87274e809ef5644f00803cb40094d4d6f23f0d5c5e075332
MD5 f2ca2dd5be3ca23a48aec4d244e35545
BLAKE2b-256 d95c1bfd9f480f600259cc626ccd20732918855c84325a357734987350493af2

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: usearch-2.13.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 279.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3d3a61d499f3a3cc13f0049c5ca8f50b69f8d03b955c37ce736d13751c4218f4
MD5 808ff5d05a8eae4ceda654c940db33f1
BLAKE2b-256 03f96523fbe77072d50c1e48a2798b2e28512060ed449e30aa3dcfb6f7324abb

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 24d44b5af28e617d6fd7d1c26d51da23d96d2d09f1de005aeb203637c43f8c01
MD5 e1a234cd11b33d028cc34264c709f4c0
BLAKE2b-256 a34458c75dac8c3528d877ef51f598cd0877ce17f702a82d159df0a69c938bb5

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 e21dd649579a30464aa5c3298acefa53be188730a9d7674e3bb063cd96c5b06c
MD5 14f518f6b9f08ba5f85e353c2ccc07cd
BLAKE2b-256 939fe565434897bf7ea10bb4a47075501268e0677790eddb173562e7785b4176

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 654b143d664e3e90683c3a49738a9c85a7d5db464e628ceb203b34e9305b575e
MD5 6fee6f3607eeabb98cd2baabb81809e4
BLAKE2b-256 47951e8e3b77c9feabd6dd1b9d06d486b7a7245601e79d08d05b2837265ccc99

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 eaff66c3957f753a0e5644b42bafd3680ee11fb1791aa922923b346b30f070ce
MD5 186b8138572afc3a0e19cb75fe57e255
BLAKE2b-256 2285218dabbe082224153e5d9ab59d1fd9908b81808ae58fd2e81c518b89a39f

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8e7585c3b8e7de9b22b8a054e0691afee34e5b9d14bd3aedd257646985a1fea0
MD5 44452312bd971768904ce6e75aafbeda
BLAKE2b-256 d8d3f3e1785cc1fdae1dccc06ce0d0456a96bb0218b0f7c50e74f28ca65435da

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1feef7d0d3e2f2e47c4747b9d931c6e0d6b4c454dedf24cab499293bd6790b8d
MD5 4c87125a321c35e274ee53ae78c42493
BLAKE2b-256 12417d1e461eeb05539428298c5bdc0f024d785aa3b385d5ab15581f687890e8

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5301fbb649c2e2054a0108e73a063b8dc7a9ecb1316792e4485e79ed16a397c6
MD5 46e8da5d1e87e066db9ac7509904e3a1
BLAKE2b-256 c7630afa481b5fcad260c4d6e34b07421f6aedd5dc3119698ae2b88ad5aba752

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: usearch-2.13.5-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 280.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 907c9a8b91c4bc2b6ae4a0de785b345eded04073e6d60ab1beee1ba68f17c9c4
MD5 02f171d747ef2a17839d2db1bfaac6fa
BLAKE2b-256 a94b091165e444e1501900c5be71e15a34b6917176711d5748946917e052f004

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 830a4466864b23ed20bc132c25097b2109512c0e3adbaa53dbe2b9e512971137
MD5 c0eca007f1cd04f67be74dbe97101a7e
BLAKE2b-256 6fa7db8cd211ea71f22d374e9664f0f2ddf0ea5652f9d78a85cda14011feaa02

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp37-cp37m-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp37-cp37m-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 77fac1d2e1324cb5f6d9128ec5b4d9c90786d760674e4fbaec745b41c278710b
MD5 583908982ec329e6f8fbb4dd8934788d
BLAKE2b-256 a4399c90b8948aa633fd4a4b89556c068355f2ae9ee7156bcf662441a3d3b07a

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 828317ce32ffcde77d592e00ea5ff4bbf1033ad4d026f6bf23c3ebab70a442fd
MD5 ff2194902eb52880d48c5936b22dd225
BLAKE2b-256 52a9aaf12ffdb9e10ec573e287859806e0decdfc6826061ae5870a52e9d594c0

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c30ce8d778b3012eceb41952be25e96ccc000e77e28e219463936e50a3721439
MD5 d6387d1584cef26d91ca3f9f7b873e74
BLAKE2b-256 38fe6d745831056bb57fa92d9ec7a585d7854289b8e0a0f27277658e2e92e4b4

See more details on using hashes here.

File details

Details for the file usearch-2.13.5-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.5-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5e289912a790e1918acac62b1666a6206f01bf811184aea899af026e8c4fefdf
MD5 2a9af6f3abf321618c865f5f5e4268f2
BLAKE2b-256 dd865f72945e7409ff5213deeda28caf8a18a7bf56639441116594be2d34c2bc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page