Skip to main content

Forecasting utilities

Project description

utilsforecast

Install

pip install utilsforecast

How to use

Generate synthetic data

from utilsforecast.data import generate_series
series = generate_series(3, with_trend=True, static_as_categorical=False)
series
unique_id ds y
0 0 2000-01-01 0.422133
1 0 2000-01-02 1.501407
2 0 2000-01-03 2.568495
3 0 2000-01-04 3.529085
4 0 2000-01-05 4.481929
... ... ... ...
481 2 2000-06-11 163.914625
482 2 2000-06-12 166.018479
483 2 2000-06-13 160.839176
484 2 2000-06-14 162.679603
485 2 2000-06-15 165.089288

486 rows × 3 columns

Plotting

from utilsforecast.plotting import plot_series
plot_series(series, plot_random=False, max_insample_length=50, engine='matplotlib')

Preprocessing

from utilsforecast.preprocessing import fill_gaps
serie = series[series['unique_id'].eq(0)].tail(10)
# drop some points
with_gaps = serie.sample(frac=0.5, random_state=0).sort_values('ds')
with_gaps
unique_id ds y
213 0 2000-08-01 18.543147
214 0 2000-08-02 19.941764
216 0 2000-08-04 21.968733
220 0 2000-08-08 19.091509
221 0 2000-08-09 20.220739
fill_gaps(with_gaps, freq='D')
unique_id ds y
0 0 2000-08-01 18.543147
1 0 2000-08-02 19.941764
2 0 2000-08-03 NaN
3 0 2000-08-04 21.968733
4 0 2000-08-05 NaN
5 0 2000-08-06 NaN
6 0 2000-08-07 NaN
7 0 2000-08-08 19.091509
8 0 2000-08-09 20.220739

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

utilsforecast-0.0.2.tar.gz (18.5 kB view details)

Uploaded Source

Built Distribution

utilsforecast-0.0.2-py3-none-any.whl (19.0 kB view details)

Uploaded Python 3

File details

Details for the file utilsforecast-0.0.2.tar.gz.

File metadata

  • Download URL: utilsforecast-0.0.2.tar.gz
  • Upload date:
  • Size: 18.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for utilsforecast-0.0.2.tar.gz
Algorithm Hash digest
SHA256 784f4ecc0ac59fcf207652c9de1c9fd16991dd448dd5375826365d90011b88fb
MD5 c731e8a3626743a65d2f4c8d4c25f247
BLAKE2b-256 4733cc150081e0f9985fb276a989ef8ebe944f44d151137c3047f24169e5426f

See more details on using hashes here.

File details

Details for the file utilsforecast-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: utilsforecast-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 19.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for utilsforecast-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 e772a99c72e49fe008be53703003fd9213432444b75b10c52ee2c567a91acba0
MD5 9d3d576ae72f0107885747dac7782765
BLAKE2b-256 9cdb2e921ea2a97c4be817d24973b15d32de7416ce4c4f48f7050a9cd2786606

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page