Skip to main content

Forecasting utilities

Project description

utilsforecast

Install

PyPI

pip install utilsforecast

Conda

conda install -c conda-forge utilsforecast

How to use

Generate synthetic data

from utilsforecast.data import generate_series
series = generate_series(3, with_trend=True, static_as_categorical=False)
series
unique_id ds y
0 0 2000-01-01 0.422133
1 0 2000-01-02 1.501407
2 0 2000-01-03 2.568495
3 0 2000-01-04 3.529085
4 0 2000-01-05 4.481929
... ... ... ...
481 2 2000-06-11 163.914625
482 2 2000-06-12 166.018479
483 2 2000-06-13 160.839176
484 2 2000-06-14 162.679603
485 2 2000-06-15 165.089288

486 rows × 3 columns

Plotting

from utilsforecast.plotting import plot_series
fig = plot_series(series, plot_random=False, max_insample_length=50, engine='matplotlib')
fig.savefig('imgs/index.png', bbox_inches='tight')

Preprocessing

from utilsforecast.preprocessing import fill_gaps
serie = series[series['unique_id'].eq(0)].tail(10)
# drop some points
with_gaps = serie.sample(frac=0.5, random_state=0).sort_values('ds')
with_gaps
unique_id ds y
213 0 2000-08-01 18.543147
214 0 2000-08-02 19.941764
216 0 2000-08-04 21.968733
220 0 2000-08-08 19.091509
221 0 2000-08-09 20.220739
fill_gaps(with_gaps, freq='D')
unique_id ds y
0 0 2000-08-01 18.543147
1 0 2000-08-02 19.941764
2 0 2000-08-03 NaN
3 0 2000-08-04 21.968733
4 0 2000-08-05 NaN
5 0 2000-08-06 NaN
6 0 2000-08-07 NaN
7 0 2000-08-08 19.091509
8 0 2000-08-09 20.220739

Evaluating

from functools import partial

import numpy as np

from utilsforecast.evaluation import evaluate
from utilsforecast.losses import mape, mase
valid = series.groupby('unique_id').tail(7).copy()
train = series.drop(valid.index)
rng = np.random.RandomState(0)
valid['seas_naive'] = train.groupby('unique_id')['y'].tail(7).values
valid['rand_model'] = valid['y'] * rng.rand(valid['y'].shape[0])
daily_mase = partial(mase, seasonality=7)
evaluate(valid, metrics=[mape, daily_mase], train_df=train)
unique_id metric seas_naive rand_model
0 0 mape 0.024139 0.440173
1 1 mape 0.054259 0.278123
2 2 mape 0.042642 0.480316
3 0 mase 0.907149 16.418014
4 1 mase 0.991635 6.404254
5 2 mase 1.013596 11.365040

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

utilsforecast-0.1.3.tar.gz (39.2 kB view details)

Uploaded Source

Built Distribution

utilsforecast-0.1.3-py3-none-any.whl (40.1 kB view details)

Uploaded Python 3

File details

Details for the file utilsforecast-0.1.3.tar.gz.

File metadata

  • Download URL: utilsforecast-0.1.3.tar.gz
  • Upload date:
  • Size: 39.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for utilsforecast-0.1.3.tar.gz
Algorithm Hash digest
SHA256 91886384b87bfb7934881d7645a0a9cb1e54704555676a30b0030ce7a094ac0f
MD5 203f99e6169a58efca8ea75c642ac5a6
BLAKE2b-256 0f5cfb14065682f4282c6d759d71831ac2a310515a87678be40a872a70b0cedc

See more details on using hashes here.

File details

Details for the file utilsforecast-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: utilsforecast-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 40.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for utilsforecast-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 e29d88fd9247e64d029f79dab2b71f8f017f0beae91e21e89d15d3cb87b34d3a
MD5 edf343d9815ff48e2ed78f29c292e3a4
BLAKE2b-256 018cf9b41aa6dd724be05401693381cd11683a0678955ce2fdd708ee03bceb06

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page