Skip to main content

Forecasting utilities

Project description

utilsforecast

Install

PyPI

pip install utilsforecast

Conda

conda install -c conda-forge utilsforecast

How to use

Generate synthetic data

from utilsforecast.data import generate_series
series = generate_series(3, with_trend=True, static_as_categorical=False)
series
unique_id ds y
0 0 2000-01-01 0.422133
1 0 2000-01-02 1.501407
2 0 2000-01-03 2.568495
3 0 2000-01-04 3.529085
4 0 2000-01-05 4.481929
... ... ... ...
481 2 2000-06-11 163.914625
482 2 2000-06-12 166.018479
483 2 2000-06-13 160.839176
484 2 2000-06-14 162.679603
485 2 2000-06-15 165.089288

486 rows × 3 columns

Plotting

from utilsforecast.plotting import plot_series
fig = plot_series(series, plot_random=False, max_insample_length=50, engine='matplotlib')
fig.savefig('imgs/index.png', bbox_inches='tight')

Preprocessing

from utilsforecast.preprocessing import fill_gaps
serie = series[series['unique_id'].eq(0)].tail(10)
# drop some points
with_gaps = serie.sample(frac=0.5, random_state=0).sort_values('ds')
with_gaps
unique_id ds y
213 0 2000-08-01 18.543147
214 0 2000-08-02 19.941764
216 0 2000-08-04 21.968733
220 0 2000-08-08 19.091509
221 0 2000-08-09 20.220739
fill_gaps(with_gaps, freq='D')
unique_id ds y
0 0 2000-08-01 18.543147
1 0 2000-08-02 19.941764
2 0 2000-08-03 NaN
3 0 2000-08-04 21.968733
4 0 2000-08-05 NaN
5 0 2000-08-06 NaN
6 0 2000-08-07 NaN
7 0 2000-08-08 19.091509
8 0 2000-08-09 20.220739

Evaluating

from functools import partial

import numpy as np

from utilsforecast.evaluation import evaluate
from utilsforecast.losses import mape, mase
valid = series.groupby('unique_id').tail(7).copy()
train = series.drop(valid.index)
rng = np.random.RandomState(0)
valid['seas_naive'] = train.groupby('unique_id')['y'].tail(7).values
valid['rand_model'] = valid['y'] * rng.rand(valid['y'].shape[0])
daily_mase = partial(mase, seasonality=7)
evaluate(valid, metrics=[mape, daily_mase], train_df=train)
unique_id metric seas_naive rand_model
0 0 mape 0.024139 0.440173
1 1 mape 0.054259 0.278123
2 2 mape 0.042642 0.480316
3 0 mase 0.907149 16.418014
4 1 mase 0.991635 6.404254
5 2 mase 1.013596 11.365040

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

utilsforecast-0.2.8.tar.gz (40.7 kB view details)

Uploaded Source

Built Distribution

utilsforecast-0.2.8-py3-none-any.whl (41.4 kB view details)

Uploaded Python 3

File details

Details for the file utilsforecast-0.2.8.tar.gz.

File metadata

  • Download URL: utilsforecast-0.2.8.tar.gz
  • Upload date:
  • Size: 40.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for utilsforecast-0.2.8.tar.gz
Algorithm Hash digest
SHA256 9cfbb2c6867718a93f09e25bf5050ecb40f161773812663df6df13a157b3426e
MD5 06723490d0f2a2df940008a5795be881
BLAKE2b-256 880937ce04f227400b42b1c45e2f141862e6fb2b6fe73a165c1ab8903261d8fe

See more details on using hashes here.

Provenance

The following attestation bundles were made for utilsforecast-0.2.8.tar.gz:

Publisher: release.yml on Nixtla/utilsforecast

Attestations:

File details

Details for the file utilsforecast-0.2.8-py3-none-any.whl.

File metadata

File hashes

Hashes for utilsforecast-0.2.8-py3-none-any.whl
Algorithm Hash digest
SHA256 4f544e4f07e3b6c9d13498f919a2f9a0d9da04ca0d774c73793519373604df22
MD5 5ea5f57717131d6ca98600d17aa21cd0
BLAKE2b-256 2d278f655e9927e305b1a1afc11c308af821c7e0b017c21ed576d036ae829479

See more details on using hashes here.

Provenance

The following attestation bundles were made for utilsforecast-0.2.8-py3-none-any.whl:

Publisher: release.yml on Nixtla/utilsforecast

Attestations:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page