Skip to main content

Unstructured grid model reading and recognizing with xarray.

Project description

CI GitHub Workflow Status Code Coverage Status
Docs Documentation Status
Package Conda PyPI
License License
Citing DOI

UXarray aims to address the geoscience community need for tools that enable standard data analysis techniques to operate directly on unstructured grid data. UXarray will provide Xarray styled functions to better read in and use unstructured grid datasets that follow standard conventions, including UGRID, SCRIP, Exodus and shapefile formats. This effort is a result of the collaboration between Project Raijin (NCAR and Pennsylvania State University) and the SEATS Project (Argonne National Laboratory, UC Davis, and Lawrence Livermore National Laboratory). The UXarray team welcomes other community members to become part of this collaboration at any level of contribution.

UXarray is implemented in pure Python and does not explicitly contain or require any compiled code. This makes UXarray more accessible to the general Python community. Any contributions to this repository in pure Python are welcome and documentation for contribution guidelines can be found when clicking New Issue under the Issues tab in the UXarray repository.

Why is the name "UXarray"?

We have created UXarray based on Xarray (via composition of a Xarray dataset object), a Pangeo ecosystem package commonly-used for structured grids recognition, to support reading and recognizing unstructured grid model outputs. We picked the name "UXarray" and preferred to capitalize the first two letters to emphasize it is Xarray for Unstructured grids.

UXarray Functionality

The following intended functionality has been inspired by discussions with members of the scientific community, within the SEATS Project and Project Raijin, and on several community platforms such as Xarray GitHub Repository. The UXarray team is receptive to additional functionality requests.

Intended Functionality for Grids

  • Support for reading and writing UGRID, SCRIP and Exodus formatted grids.
  • Support for reading and writing shapefiles.
  • Support for arbitrary structured and unstructured grids on the sphere, including latitude-longitude grids, grids with only partial coverage of the sphere, and grids with concave faces.
  • Support for finite volume and finite element outputs.
  • Support for edges that are either great circle arcs or lines of constant latitude.
  • Calculation of face areas, centroids, and bounding latitude-longitude boxes.
  • Triangular decompositions.
  • Calculation of supermeshes (consisting of grid lines from two input grids).

Intended Functionality for DataArrays on Grids

  • Regridding of data between unstructured grids.
  • Global and regional integration of fields, including zonal averages.
  • Application of calculus operations, including divergence, curl, Laplacian and gradient.
  • Snapshots and composites following particular features.

Documentation

UXarray Documentation

Contributor’s Guide

Installation

Project Raijin Homepage

SEATS Project Homepage

Citing UXarray

If you'd like to cite our work, please follow How to cite UXarray.

Support

NSF Logo Project Raijin, entitled "Collaborative Research: EarthCube Capabilities: Raijin: Community Geoscience Analysis Tools for Unstructured Mesh Data", was awarded by NSF 21-515 EarthCube (Award Number (FAIN): 2126458) on 08/19/2021. The award period of performance has a start date of 09/01/2021 and end date of 08/31/2024.
DOE Logo SEATS is funded by the Regional and Global Modeling and Analysis (RGMA) program area in the U.S. Department of Energy (DOE) Earth and Environmental System Modeling Program which is part of the Earth and Environmental Systems Sciences Division of the Office of Biological and Environmental Research in DOE’s Office of Science.
EarthCube Logo EarthCube aims to transform the conduct of geosciences research by developing and maintaining a well-connected and facile environment that improves access, sharing, visualization, and analysis of data and related resources.
PANGEO Logo Pangeo supports collaborative efforts to develop software and infrastructure to enable Big Data geoscience research.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

uxarray-2023.4.0.tar.gz (9.3 MB view details)

Uploaded Source

Built Distribution

uxarray-2023.4.0-py3-none-any.whl (31.6 kB view details)

Uploaded Python 3

File details

Details for the file uxarray-2023.4.0.tar.gz.

File metadata

  • Download URL: uxarray-2023.4.0.tar.gz
  • Upload date:
  • Size: 9.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for uxarray-2023.4.0.tar.gz
Algorithm Hash digest
SHA256 4128d88b196df18a0c7eb7b95e7f252bc10e7b8ac5e46f0dee6aac35552b33ba
MD5 77273ae57fc17acd43cdf25fe6b875ea
BLAKE2b-256 79e67127f2ba183445a798ab5fe67504cd2697da3b64d4475340ae7440dc711f

See more details on using hashes here.

File details

Details for the file uxarray-2023.4.0-py3-none-any.whl.

File metadata

  • Download URL: uxarray-2023.4.0-py3-none-any.whl
  • Upload date:
  • Size: 31.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for uxarray-2023.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 a1614fe223c3ddbc81ed490e19c9ee450d7d11ed531393d87c4585e41f811bcd
MD5 78aa90acaf0028cb491b6fb828cf69dc
BLAKE2b-256 7b7d76b7cc65fab081bbc0a23c14bb0a7a65f768b1dc8e726e22af1727ed0a0a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page