v2 SampleSheet maker
Project description
V2 SampleSheet Maker
Generate an Illumina SampleSheet CSV from JSON.
Supported Sections
Sections currently supported:
- Header
- Reads
- BCLConvert_Settings
- BCLConvert_Data
- Cloud_Settings
- Cloud_Data
- (Cloud_)?TSO500S_Settings
- (Cloud_)?TS0500S_Data
- (Cloud_)?TSO500L_Settings
- (Cloud_)?TSO500L_Data
Installation
Installation from pypi
pip install v2-samplesheet-maker
Alternatively one may use the docker container ghcr.io/umccr/v2-samplesheet-maker:latest
Usage
Usage:
v2-samplesheet-maker <input-json> <output-csv>
Use -
for input-json
parameter to parse json from stdin,
Use -
for output-json
parameter to parse output samplesheet csv to stdout.
Examples
See examples/ for more info
Input JSON
Click to expand!
{
"header": {
"file_format_version": 2,
"run_name": "my-illumina-sequencing-run",
"run_description": "A test run",
"instrument_platform": "NovaSeq 6000",
"instrument_type": "NovaSeq"
},
"reads": {
"read_1_cycles": 151,
"read_2_cycles": 151,
"index_1_cycles": 10,
"index_2_cycles": 10
},
"bclconvert_settings": {
"adapter_behavior": "trim",
"adapter_read_1": null,
"adapter_read_2": null,
"adapter_stringency": null,
"barcode_mismatches_index_1": 1,
"barcode_mismatches_index_2": 1,
"minimum_trimmed_read_length": null,
"minimum_adapter_overlap": 2,
"mask_short_reads": null,
"override_cycles": "Y151;Y10;Y8N2;Y151",
"trim_umi": null,
"create_fastq_for_index_reads": false,
"no_lane_splitting": false,
"fastq_compression_format": "gzip",
"find_adapters_with_indels": null,
"independent_index_collision_check": null
},
"bclconvert_data": [
{
"sample_id": "MyFirstSample",
"lane": 1,
"index": "AAAAAAAAAA",
"index2": "CCCCCCCC",
"sample_project": "SampleProject",
"sample_name": null
},
{
"sample_id": "MySecondSample",
"lane": 1,
"index": "GGGGGGGGGG",
"index2": "TTTTTTTT",
"sample_project": "SampleProject",
"sample_name": null
}
]
}
Output CSV
Click to expand!
[Header]
FileFormatVersion,2
RunName,my-illumina-sequencing-run
RunDescription,A test run
InstrumentPlatform,NovaSeq 6000
InstrumentType,NovaSeq
[Reads]
Read1Cycles,151
Read2Cycles,151
Index1Cycles,10
Index2Cycles,10
[BCLConvert_Settings]
AdapterBehavior,trim
BarcodeMismatchesIndex1,1
BarcodeMismatchesIndex2,1
MinimumAdapterOverlap,2
OverrideCycles,Y151;Y10;Y8N2;Y151
CreateFastqForIndexReads,False
NoLaneSplitting,False
FastqCompressionFormat,gzip
[BCLConvert_Data]
Lane,Sample_ID,index,index2,Sample_Project
1,MyFirstSample,AAAAAAAAAA,CCCCCCCC,SampleProject
1,MySecondSample,GGGGGGGGGG,TTTTTTTT,SampleProject
Cloud URN Support
We also support URNs for BSSH auto-launch
The urn attribute can be placed either in the Cloud_Settings section under the key <app_name>_Pipeline
or the settings section of the application under the key urn
.
In both circumstances, the urn will be placed in the cloud settings section of the samplesheet under <app_name_Pipeline>
.
When using the Cloud_Settings and Cloud_Data section, one should place the library_prep_kit_name
and index_adapter_kit_name
for
each element in bclconvert_data
.
One will also need to place the following key, value pairs under the cloud_settings
key:
- generated_version: "0.0.0",
- cloud_workflow: "ica_workflow_1"
An example can be seen below:
Input
Click to expand!
{
"header": {
"file_format_version": 2,
"run_name": "TruSeq-PCRfree-NA12878-10B",
"instrument_type": "NovaSeqXPlus",
"index_orientation": "Forward"
},
"reads": {
"read_1_cycles": 151,
"read_2_cycles": 151,
"index_1_cycles": 10,
"index_2_cycles": 10
},
"bclconvert_settings": {
"software_version": "4.1.27",
"adapter_read_1": "AGATCGGAAGAGCACACGTCTGAACTCCAGTCA",
"adapter_read_2": "AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT",
"override_cycles": "Y151;I8N2;N2I8;Y151",
"fastq_compression_format": "gzip",
"urn": "urn:ilmn:ica:pipeline:bf93b5cf-cb27-4dfa-846e-acd6eb081aca#BclConvert_v4_2_7"
},
"bclconvert_data": [
{
"lane": 1,
"sample_id": "TSPF-NA12878-10B-Rep1",
"index": "CCGCGGTT",
"index2": "AGCGCTAG",
"library_prep_kit_name": "TruSeqDNAPCRFree",
"index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
},
{
"lane": 1,
"sample_id": "TSPF-NA12878-10B-Rep1",
"index": "TTATAACC",
"index2": "GATATCGA",
"library_prep_kit_name": "TruSeqDNAPCRFree",
"index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
},
{
"lane": 1,
"sample_id": "TSPF-NA12878-10B-Rep1",
"index": "GGACTTGG",
"index2": "CGCAGACG",
"library_prep_kit_name": "TruSeqDNAPCRFree",
"index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
},
{
"lane": 1,
"sample_id": "TSPF-NA12878-10B-Rep1",
"index": "AAGTCCAA",
"index2": "TATGAGTA",
"library_prep_kit_name": "TruSeqDNAPCRFree",
"index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
},
{
"lane": 1,
"sample_id": "TSPF-NA12878-10B-Rep1",
"index": "ATCCACTG",
"index2": "AGGTGCGT",
"library_prep_kit_name": "TruSeqDNAPCRFree",
"index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
},
{
"lane": 1,
"sample_id": "TSPF-NA12878-10B-Rep1",
"index": "GCTTGTCA",
"index2": "GAACATAC",
"library_prep_kit_name": "TruSeqDNAPCRFree",
"index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
},
{
"lane": 1,
"sample_id": "TSPF-NA12878-10B-Rep1",
"index": "CAAGCTAG",
"index2": "ACATAGCG",
"library_prep_kit_name": "TruSeqDNAPCRFree",
"index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
},
{
"lane": 1,
"sample_id": "TSPF-NA12878-10B-Rep1",
"index": "TGGATCGA",
"index2": "GTGCGATA",
"library_prep_kit_name": "TruSeqDNAPCRFree",
"index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
},
{
"lane": 1,
"sample_id": "TSPF-NA12878-10B-Rep2",
"index": "AGTTCAGG",
"index2": "CCAACAGA",
"library_prep_kit_name": "TruSeqDNAPCRFree",
"index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
},
{
"lane": 1,
"sample_id": "TSPF-NA12878-10B-Rep2",
"index": "GACCTGAA",
"index2": "TTGGTGAG",
"library_prep_kit_name": "TruSeqDNAPCRFree",
"index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
},
{
"lane": 1,
"sample_id": "TSPF-NA12878-10B-Rep2",
"index": "TCTCTACT",
"index2": "CGCGGTTC",
"library_prep_kit_name": "TruSeqDNAPCRFree",
"index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
},
{
"lane": 1,
"sample_id": "TSPF-NA12878-10B-Rep2",
"index": "CTCTCGTC",
"index2": "TATAACCT",
"library_prep_kit_name": "TruSeqDNAPCRFree",
"index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
},
{
"lane": 1,
"sample_id": "TSPF-NA12878-10B-Rep2",
"index": "CCAAGTCT",
"index2": "AAGGATGA",
"library_prep_kit_name": "TruSeqDNAPCRFree",
"index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
},
{
"lane": 1,
"sample_id": "TSPF-NA12878-10B-Rep2",
"index": "TTGGACTC",
"index2": "GGAAGCAG",
"library_prep_kit_name": "TruSeqDNAPCRFree",
"index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
},
{
"lane": 1,
"sample_id": "TSPF-NA12878-10B-Rep2",
"index": "GGCTTAAG",
"index2": "TCGTGACC",
"library_prep_kit_name": "TruSeqDNAPCRFree",
"index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
},
{
"lane": 1,
"sample_id": "TSPF-NA12878-10B-Rep2",
"index": "AATCCGGA",
"index2": "CTACAGTT",
"library_prep_kit_name": "TruSeqDNAPCRFree",
"index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
},
{
"lane": 1,
"sample_id": "TSPF-NA12878-10B-Rep3",
"index": "TAATACAG",
"index2": "ATATTCAC",
"library_prep_kit_name": "TruSeqDNAPCRFree",
"index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
},
{
"lane": 1,
"sample_id": "TSPF-NA12878-10B-Rep3",
"index": "CGGCGTGA",
"index2": "GCGCCTGT",
"library_prep_kit_name": "TruSeqDNAPCRFree",
"index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
},
{
"lane": 1,
"sample_id": "TSPF-NA12878-10B-Rep3",
"index": "ATGTAAGT",
"index2": "ACTCTATG",
"library_prep_kit_name": "TruSeqDNAPCRFree",
"index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
},
{
"lane": 1,
"sample_id": "TSPF-NA12878-10B-Rep3",
"index": "GCACGGAC",
"index2": "GTCTCGCA",
"library_prep_kit_name": "TruSeqDNAPCRFree",
"index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
},
{
"lane": 1,
"sample_id": "TSPF-NA12878-10B-Rep3",
"index": "GGTACCTT",
"index2": "AAGACGTC",
"library_prep_kit_name": "TruSeqDNAPCRFree",
"index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
},
{
"lane": 1,
"sample_id": "TSPF-NA12878-10B-Rep3",
"index": "AACGTTCC",
"index2": "GGAGTACT",
"library_prep_kit_name": "TruSeqDNAPCRFree",
"index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
},
{
"lane": 1,
"sample_id": "TSPF-NA12878-10B-Rep3",
"index": "GCAGAATT",
"index2": "ACCGGCCA",
"library_prep_kit_name": "TruSeqDNAPCRFree",
"index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
},
{
"lane": 1,
"sample_id": "TSPF-NA12878-10B-Rep3",
"index": "ATGAGGCC",
"index2": "GTTAATTG",
"library_prep_kit_name": "TruSeqDNAPCRFree",
"index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
}
],
"cloud_settings": {
"generated_version": "0.0.0",
"cloud_workflow": "ica_workflow_1"
}
}
Yields
Output
Click to expand!
[Header]
FileFormatVersion,2
RunName,TruSeq-PCRfree-NA12878-10B
InstrumentType,NovaSeqXPlus
IndexOrientation,Forward
[Reads]
Read1Cycles,151
Read2Cycles,151
Index1Cycles,10
Index2Cycles,10
[BCLConvert_Settings]
AdapterRead1,AGATCGGAAGAGCACACGTCTGAACTCCAGTCA
AdapterRead2,AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT
OverrideCycles,Y151;I8N2;N2I8;Y151
FastqCompressionFormat,gzip
SoftwareVersion,4.1.27
[BCLConvert_Data]
Lane,Sample_ID,index,index2
1,TSPF-NA12878-10B-Rep1,CCGCGGTT,AGCGCTAG
1,TSPF-NA12878-10B-Rep1,TTATAACC,GATATCGA
1,TSPF-NA12878-10B-Rep1,GGACTTGG,CGCAGACG
1,TSPF-NA12878-10B-Rep1,AAGTCCAA,TATGAGTA
1,TSPF-NA12878-10B-Rep1,ATCCACTG,AGGTGCGT
1,TSPF-NA12878-10B-Rep1,GCTTGTCA,GAACATAC
1,TSPF-NA12878-10B-Rep1,CAAGCTAG,ACATAGCG
1,TSPF-NA12878-10B-Rep1,TGGATCGA,GTGCGATA
1,TSPF-NA12878-10B-Rep2,AGTTCAGG,CCAACAGA
1,TSPF-NA12878-10B-Rep2,GACCTGAA,TTGGTGAG
1,TSPF-NA12878-10B-Rep2,TCTCTACT,CGCGGTTC
1,TSPF-NA12878-10B-Rep2,CTCTCGTC,TATAACCT
1,TSPF-NA12878-10B-Rep2,CCAAGTCT,AAGGATGA
1,TSPF-NA12878-10B-Rep2,TTGGACTC,GGAAGCAG
1,TSPF-NA12878-10B-Rep2,GGCTTAAG,TCGTGACC
1,TSPF-NA12878-10B-Rep2,AATCCGGA,CTACAGTT
1,TSPF-NA12878-10B-Rep3,TAATACAG,ATATTCAC
1,TSPF-NA12878-10B-Rep3,CGGCGTGA,GCGCCTGT
1,TSPF-NA12878-10B-Rep3,ATGTAAGT,ACTCTATG
1,TSPF-NA12878-10B-Rep3,GCACGGAC,GTCTCGCA
1,TSPF-NA12878-10B-Rep3,GGTACCTT,AAGACGTC
1,TSPF-NA12878-10B-Rep3,AACGTTCC,GGAGTACT
1,TSPF-NA12878-10B-Rep3,GCAGAATT,ACCGGCCA
1,TSPF-NA12878-10B-Rep3,ATGAGGCC,GTTAATTG
[Cloud_Settings]
GeneratedVersion,0.0.0
Cloud_Workflow,ica_workflow_1
BCLConvert_Pipeline,urn:ilmn:ica:pipeline:bf93b5cf-cb27-4dfa-846e-acd6eb081aca#BclConvert_v4_2_7
[Cloud_Data]
Sample_ID,LibraryName,LibraryPrepKitName,IndexAdapterKitName
TSPF-NA12878-10B-Rep1,TSPF-NA12878-10B-Rep1_AAGTCCAA_TATGAGTA,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep1,TSPF-NA12878-10B-Rep1_ATCCACTG_AGGTGCGT,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep1,TSPF-NA12878-10B-Rep1_CAAGCTAG_ACATAGCG,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep1,TSPF-NA12878-10B-Rep1_CCGCGGTT_AGCGCTAG,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep1,TSPF-NA12878-10B-Rep1_GCTTGTCA_GAACATAC,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep1,TSPF-NA12878-10B-Rep1_GGACTTGG_CGCAGACG,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep1,TSPF-NA12878-10B-Rep1_TGGATCGA_GTGCGATA,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep1,TSPF-NA12878-10B-Rep1_TTATAACC_GATATCGA,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep2,TSPF-NA12878-10B-Rep2_AATCCGGA_CTACAGTT,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep2,TSPF-NA12878-10B-Rep2_AGTTCAGG_CCAACAGA,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep2,TSPF-NA12878-10B-Rep2_CCAAGTCT_AAGGATGA,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep2,TSPF-NA12878-10B-Rep2_CTCTCGTC_TATAACCT,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep2,TSPF-NA12878-10B-Rep2_GACCTGAA_TTGGTGAG,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep2,TSPF-NA12878-10B-Rep2_GGCTTAAG_TCGTGACC,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep2,TSPF-NA12878-10B-Rep2_TCTCTACT_CGCGGTTC,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep2,TSPF-NA12878-10B-Rep2_TTGGACTC_GGAAGCAG,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep3,TSPF-NA12878-10B-Rep3_AACGTTCC_GGAGTACT,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep3,TSPF-NA12878-10B-Rep3_ATGAGGCC_GTTAATTG,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep3,TSPF-NA12878-10B-Rep3_ATGTAAGT_ACTCTATG,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep3,TSPF-NA12878-10B-Rep3_CGGCGTGA_GCGCCTGT,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep3,TSPF-NA12878-10B-Rep3_GCACGGAC_GTCTCGCA,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep3,TSPF-NA12878-10B-Rep3_GCAGAATT_ACCGGCCA,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep3,TSPF-NA12878-10B-Rep3_GGTACCTT_AAGACGTC,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep3,TSPF-NA12878-10B-Rep3_TAATACAG_ATATTCAC,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
Testing your outputs
The v2-samplesheet-maker will validate that your parameters are the correct type, the correct name AND within the appropriate range. It will NOT however determine if your settings are appropriate or compatible with a BCLConvert run, i.e it will NOT ensure that your indexes have an appropriate hamming distance.
If you wish to validate your output samplesheet with BCLConvert, you can use the following script -
scripts/build-samplesheet-and-validate-with-bcl-convert.sh <input-json> [docker-image]
. This will convert the input json to csv and then run the
docker container bclconvert against your samplesheet.
You will need both jq and docker installed for this to work.
Additional Usage
Parsing a SampleSheet CSV to JSON
We also have created a parser between the csv and json, with the following usage syntax
v2-samplesheet-to-json SampleSheet.csv -
Input SampleSheet CSV
Click to expand!
[Header]
FileFormatVersion,2
RunName,my-illumina-sequencing-run
RunDescription,A test run
InstrumentPlatform,NovaSeq 6000
InstrumentType,NovaSeq
[Reads]
Read1Cycles,151
Read2Cycles,151
Index1Cycles,10
Index2Cycles,10
[BCLConvert_Settings]
AdapterBehavior,trim
BarcodeMismatchesIndex1,1
BarcodeMismatchesIndex2,1
MinimumAdapterOverlap,2
OverrideCycles,Y151;Y10;Y8N2;Y151
CreateFastqForIndexReads,False
NoLaneSplitting,False
FastqCompressionFormat,gzip
[BCLConvert_Data]
Lane,Sample_ID,index,index2,Sample_Project
1,MyFirstSample,AAAAAAAAAA,CCCCCCCC,SampleProject
1,MySecondSample,GGGGGGGGGG,TTTTTTTT,SampleProject
Gives us
Click to expand!
{
"header": {
"file_format_version": 2,
"run_name": "my-illumina-sequencing-run",
"run_description": "A test run",
"instrument_platform": "NovaSeq 6000",
"instrument_type": "NovaSeq"
},
"reads": {
"read_1_cycles": 151,
"read_2_cycles": 151,
"index_1_cycles": 10,
"index_2_cycles": 10
},
"bclconvert_settings": {
"adapter_behavior": "trim",
"barcode_mismatches_index_1": 1,
"barcode_mismatches_index_2": 1,
"minimum_adapter_overlap": 2,
"override_cycles": "Y151;Y10;Y8N2;Y151",
"create_fastq_for_index_reads": false,
"no_lane_splitting": false,
"fastq_compression_format": "gzip"
},
"bclconvert_data": [
{
"lane": 1,
"sample_id": "MyFirstSample",
"index": "AAAAAAAAAA",
"index2": "CCCCCCCC",
"sample_project": "SampleProject"
},
{
"lane": 1,
"sample_id": "MySecondSample",
"index": "GGGGGGGGGG",
"index2": "TTTTTTTT",
"sample_project": "SampleProject"
}
]
}
Manipulating a samplesheet by parsing through JSON
For this component, you will need some basic knowledge of the jq command line tool.
In this example we are given a standard samplesheet but want to edit the adapters for one of the samples.
Whilst we could do this with grep, sed or awk, it's a little hacky, instead we can
- Parse the samplesheet to json to stdout
- Use jq to update the samplesheet
- Write out the updated samplesheet to csv
# Initialise new index variable
NEW_I7_INDEX="TTTTTTTTTT"
SAMPLE_ID="MySecondSample"
# Convert the SampleSheet to JSON
# Update the index for the sample "MySecondSample" in the bclconvert_data section
# Write out the new samplesheet to csv
v2-samplesheet-to-json SampleSheet.csv - | \
jq --raw-output \
--arg sample_id "${SAMPLE_ID}" \
--arg replacement_index "${NEW_I7_INDEX}" \
'
.bclconvert_data=(
.bclconvert_data |
map(
if .sample_id == $sample_id then
.index = $replacement_index
else
.
end
)
)
' | \
v2-samplesheet-maker - SampleSheet.updated_index.csv
Gives us the following samplesheet as an output
[Header]
FileFormatVersion,2
RunName,my-illumina-sequencing-run
RunDescription,A test run
InstrumentPlatform,NovaSeq 6000
InstrumentType,NovaSeq
[Reads]
Read1Cycles,151
Read2Cycles,151
Index1Cycles,10
Index2Cycles,10
[BCLConvert_Settings]
AdapterBehavior,trim
BarcodeMismatchesIndex1,1
BarcodeMismatchesIndex2,1
MinimumAdapterOverlap,2
OverrideCycles,Y151;Y10;Y8N2;Y151
CreateFastqForIndexReads,False
NoLaneSplitting,False
FastqCompressionFormat,gzip
[BCLConvert_Data]
Lane,Sample_ID,index,index2,Sample_Project
1,MyFirstSample,AAAAAAAAAA,CCCCCCCC,SampleProject
1,MySecondSample,TTTTTTTTTT,TTTTTTTT,SampleProject
If we run a diff on our original and updated samplesheet, we can see that the index for "MySecondSample" has been updated.
diff SampleSheet.csv SampleSheet.updated_index.csv
Yields
27c27
< 1,MySecondSample,GGGGGGGGGG,TTTTTTTT,SampleProject
---
> 1,MySecondSample,TTTTTTTTTT,TTTTTTTT,SampleProject
Contributing
Is there a missing section you'd like to see?
You can generate your own sections by
- Forking this repository.
- Adding the section pydantic model to the section models module
- Extending the SampleSheel pydantic model in the samplesheet models module
- Generating a class for your section in the section class module
- Extending the SampleSheet class to write out your section in the samplesheet class module
- Add a test for your section in the test_sections module
- Generating a PR back to this repository! ( Please squash your commits :) )
Release Cycles
We try and update this repository for every new Dragen Release (which coincides with a BCLConvert release) and tag accordingly.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file v2_samplesheet_maker-4.2.4.post20241110133537.tar.gz
.
File metadata
- Download URL: v2_samplesheet_maker-4.2.4.post20241110133537.tar.gz
- Upload date:
- Size: 35.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | eb2297089eb573229abe2716786d85dcf90f1b4fd74c4efc5fdc22923979ec75 |
|
MD5 | 5f6547fdfa6f42c6c1c50a54a5f8984a |
|
BLAKE2b-256 | 8aa600f9ee55794a5266a99694a09aadb8b5b4d2f30e2d1280f3cd59f79b1244 |
File details
Details for the file v2_samplesheet_maker-4.2.4.post20241110133537-py3-none-any.whl
.
File metadata
- Download URL: v2_samplesheet_maker-4.2.4.post20241110133537-py3-none-any.whl
- Upload date:
- Size: 46.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ed98efdfefceeff85d3d074509c8f3822516c680ee49e84e2903b90b59d6f1b3 |
|
MD5 | 15e8cf55f8dc55c463a47542967781aa |
|
BLAKE2b-256 | c1b5b37f33656ce53760c0758d551f4c3029e603277af33c1a9410aafd0ec806 |