Skip to main content

v2 SampleSheet maker

Project description

V2 SampleSheet Maker

Build and Deploy PyPI version

Generate an Illumina SampleSheet CSV from JSON.

Supported Sections

Sections currently supported:

  • Header
  • Reads
  • BCLConvert_Settings
  • BCLConvert_Data
  • Cloud_Settings
  • Cloud_Data
  • (Cloud_)?TSO500S_Settings
  • (Cloud_)?TS0500S_Data
  • (Cloud_)?TSO500L_Settings
  • (Cloud_)?TSO500L_Data

Installation

Installation from pypi

pip install v2-samplesheet-maker

Alternatively one may use the docker container ghcr.io/umccr/v2-samplesheet-maker:latest

Usage

Usage:
v2-samplesheet-maker <input-json> <output-csv>

Use - for input-json parameter to parse json from stdin,
Use - for output-json parameter to parse output samplesheet csv to stdout.

Examples

See examples/ for more info

Input JSON

Click to expand!
{
  "header": {
    "file_format_version": 2,
    "run_name": "my-illumina-sequencing-run",
    "run_description": "A test run",
    "instrument_platform": "NovaSeq 6000",
    "instrument_type": "NovaSeq"
  },
  "reads": {
    "read_1_cycles": 151,
    "read_2_cycles": 151,
    "index_1_cycles": 10,
    "index_2_cycles": 10
  },
  "bclconvert_settings": {
    "adapter_behavior": "trim",
    "adapter_read_1": null,
    "adapter_read_2": null,
    "adapter_stringency": null,
    "barcode_mismatches_index_1": 1,
    "barcode_mismatches_index_2": 1,
    "minimum_trimmed_read_length": null,
    "minimum_adapter_overlap": 2,
    "mask_short_reads": null,
    "override_cycles": "Y151;Y10;Y8N2;Y151",
    "trim_umi": null,
    "create_fastq_for_index_reads": false,
    "no_lane_splitting": false,
    "fastq_compression_format": "gzip",
    "find_adapters_with_indels": null,
    "independent_index_collision_check": null
  },
  "bclconvert_data": [
    {
      "sample_id": "MyFirstSample",
      "lane": 1,
      "index": "AAAAAAAAAA",
      "index2": "CCCCCCCC",
      "sample_project": "SampleProject",
      "sample_name": null
    },
    {
      "sample_id": "MySecondSample",
      "lane": 1,
      "index": "GGGGGGGGGG",
      "index2": "TTTTTTTT",
      "sample_project": "SampleProject",
      "sample_name": null
    }
  ]
}

Output CSV

Click to expand!
[Header]
FileFormatVersion,2
RunName,my-illumina-sequencing-run
RunDescription,A test run
InstrumentPlatform,NovaSeq 6000
InstrumentType,NovaSeq

[Reads]
Read1Cycles,151
Read2Cycles,151
Index1Cycles,10
Index2Cycles,10

[BCLConvert_Settings]
AdapterBehavior,trim
BarcodeMismatchesIndex1,1
BarcodeMismatchesIndex2,1
MinimumAdapterOverlap,2
OverrideCycles,Y151;Y10;Y8N2;Y151
CreateFastqForIndexReads,False
NoLaneSplitting,False
FastqCompressionFormat,gzip

[BCLConvert_Data]
Lane,Sample_ID,index,index2,Sample_Project
1,MyFirstSample,AAAAAAAAAA,CCCCCCCC,SampleProject
1,MySecondSample,GGGGGGGGGG,TTTTTTTT,SampleProject

Cloud URN Support

We also support URNs for BSSH auto-launch

The urn attribute can be placed either in the Cloud_Settings section under the key <app_name>_Pipeline or the settings section of the application under the key urn. In both circumstances, the urn will be placed in the cloud settings section of the samplesheet under <app_name_Pipeline>.

When using the Cloud_Settings and Cloud_Data section, one should place the library_prep_kit_name and index_adapter_kit_name for each element in bclconvert_data.

One will also need to place the following key, value pairs under the cloud_settings key:

  • generated_version: "0.0.0",
  • cloud_workflow: "ica_workflow_1"

An example can be seen below:

Input

Click to expand!
{
  "header": {
    "file_format_version": 2,
    "run_name": "TruSeq-PCRfree-NA12878-10B",
    "instrument_type": "NovaSeqXPlus",
    "index_orientation": "Forward"
  },
  "reads": {
    "read_1_cycles": 151,
    "read_2_cycles": 151,
    "index_1_cycles": 10,
    "index_2_cycles": 10
  },
  "bclconvert_settings": {
    "software_version": "4.1.27",
    "adapter_read_1": "AGATCGGAAGAGCACACGTCTGAACTCCAGTCA",
    "adapter_read_2": "AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT",
    "override_cycles": "Y151;I8N2;N2I8;Y151",
    "fastq_compression_format": "gzip",
    "urn": "urn:ilmn:ica:pipeline:bf93b5cf-cb27-4dfa-846e-acd6eb081aca#BclConvert_v4_2_7"
  },
  "bclconvert_data": [
    {
      "lane": 1,
      "sample_id": "TSPF-NA12878-10B-Rep1",
      "index": "CCGCGGTT",
      "index2": "AGCGCTAG",
      "library_prep_kit_name": "TruSeqDNAPCRFree",
      "index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
    },
    {
      "lane": 1,
      "sample_id": "TSPF-NA12878-10B-Rep1",
      "index": "TTATAACC",
      "index2": "GATATCGA",
      "library_prep_kit_name": "TruSeqDNAPCRFree",
      "index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
    },
    {
      "lane": 1,
      "sample_id": "TSPF-NA12878-10B-Rep1",
      "index": "GGACTTGG",
      "index2": "CGCAGACG",
      "library_prep_kit_name": "TruSeqDNAPCRFree",
      "index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
    },
    {
      "lane": 1,
      "sample_id": "TSPF-NA12878-10B-Rep1",
      "index": "AAGTCCAA",
      "index2": "TATGAGTA",
      "library_prep_kit_name": "TruSeqDNAPCRFree",
      "index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
    },
    {
      "lane": 1,
      "sample_id": "TSPF-NA12878-10B-Rep1",
      "index": "ATCCACTG",
      "index2": "AGGTGCGT",
      "library_prep_kit_name": "TruSeqDNAPCRFree",
      "index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
    },
    {
      "lane": 1,
      "sample_id": "TSPF-NA12878-10B-Rep1",
      "index": "GCTTGTCA",
      "index2": "GAACATAC",
      "library_prep_kit_name": "TruSeqDNAPCRFree",
      "index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
    },
    {
      "lane": 1,
      "sample_id": "TSPF-NA12878-10B-Rep1",
      "index": "CAAGCTAG",
      "index2": "ACATAGCG",
      "library_prep_kit_name": "TruSeqDNAPCRFree",
      "index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
    },
    {
      "lane": 1,
      "sample_id": "TSPF-NA12878-10B-Rep1",
      "index": "TGGATCGA",
      "index2": "GTGCGATA",
      "library_prep_kit_name": "TruSeqDNAPCRFree",
      "index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
    },
    {
      "lane": 1,
      "sample_id": "TSPF-NA12878-10B-Rep2",
      "index": "AGTTCAGG",
      "index2": "CCAACAGA",
      "library_prep_kit_name": "TruSeqDNAPCRFree",
      "index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
    },
    {
      "lane": 1,
      "sample_id": "TSPF-NA12878-10B-Rep2",
      "index": "GACCTGAA",
      "index2": "TTGGTGAG",
      "library_prep_kit_name": "TruSeqDNAPCRFree",
      "index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
    },
    {
      "lane": 1,
      "sample_id": "TSPF-NA12878-10B-Rep2",
      "index": "TCTCTACT",
      "index2": "CGCGGTTC",
      "library_prep_kit_name": "TruSeqDNAPCRFree",
      "index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
    },
    {
      "lane": 1,
      "sample_id": "TSPF-NA12878-10B-Rep2",
      "index": "CTCTCGTC",
      "index2": "TATAACCT",
      "library_prep_kit_name": "TruSeqDNAPCRFree",
      "index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
    },
    {
      "lane": 1,
      "sample_id": "TSPF-NA12878-10B-Rep2",
      "index": "CCAAGTCT",
      "index2": "AAGGATGA",
      "library_prep_kit_name": "TruSeqDNAPCRFree",
      "index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
    },
    {
      "lane": 1,
      "sample_id": "TSPF-NA12878-10B-Rep2",
      "index": "TTGGACTC",
      "index2": "GGAAGCAG",
      "library_prep_kit_name": "TruSeqDNAPCRFree",
      "index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
    },
    {
      "lane": 1,
      "sample_id": "TSPF-NA12878-10B-Rep2",
      "index": "GGCTTAAG",
      "index2": "TCGTGACC",
      "library_prep_kit_name": "TruSeqDNAPCRFree",
      "index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
    },
    {
      "lane": 1,
      "sample_id": "TSPF-NA12878-10B-Rep2",
      "index": "AATCCGGA",
      "index2": "CTACAGTT",
      "library_prep_kit_name": "TruSeqDNAPCRFree",
      "index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
    },
    {
      "lane": 1,
      "sample_id": "TSPF-NA12878-10B-Rep3",
      "index": "TAATACAG",
      "index2": "ATATTCAC",
      "library_prep_kit_name": "TruSeqDNAPCRFree",
      "index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
    },
    {
      "lane": 1,
      "sample_id": "TSPF-NA12878-10B-Rep3",
      "index": "CGGCGTGA",
      "index2": "GCGCCTGT",
      "library_prep_kit_name": "TruSeqDNAPCRFree",
      "index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
    },
    {
      "lane": 1,
      "sample_id": "TSPF-NA12878-10B-Rep3",
      "index": "ATGTAAGT",
      "index2": "ACTCTATG",
      "library_prep_kit_name": "TruSeqDNAPCRFree",
      "index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
    },
    {
      "lane": 1,
      "sample_id": "TSPF-NA12878-10B-Rep3",
      "index": "GCACGGAC",
      "index2": "GTCTCGCA",
      "library_prep_kit_name": "TruSeqDNAPCRFree",
      "index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
    },
    {
      "lane": 1,
      "sample_id": "TSPF-NA12878-10B-Rep3",
      "index": "GGTACCTT",
      "index2": "AAGACGTC",
      "library_prep_kit_name": "TruSeqDNAPCRFree",
      "index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
    },
    {
      "lane": 1,
      "sample_id": "TSPF-NA12878-10B-Rep3",
      "index": "AACGTTCC",
      "index2": "GGAGTACT",
      "library_prep_kit_name": "TruSeqDNAPCRFree",
      "index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
    },
    {
      "lane": 1,
      "sample_id": "TSPF-NA12878-10B-Rep3",
      "index": "GCAGAATT",
      "index2": "ACCGGCCA",
      "library_prep_kit_name": "TruSeqDNAPCRFree",
      "index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
    },
    {
      "lane": 1,
      "sample_id": "TSPF-NA12878-10B-Rep3",
      "index": "ATGAGGCC",
      "index2": "GTTAATTG",
      "library_prep_kit_name": "TruSeqDNAPCRFree",
      "index_adapter_kit_name": "TruSeqDnaUDIndexes96Indexes"
    }
  ],
  "cloud_settings": {
    "generated_version": "0.0.0",
    "cloud_workflow": "ica_workflow_1"
  }
}

Yields

Output

Click to expand!
[Header]
FileFormatVersion,2
RunName,TruSeq-PCRfree-NA12878-10B
InstrumentType,NovaSeqXPlus
IndexOrientation,Forward

[Reads]
Read1Cycles,151
Read2Cycles,151
Index1Cycles,10
Index2Cycles,10

[BCLConvert_Settings]
AdapterRead1,AGATCGGAAGAGCACACGTCTGAACTCCAGTCA
AdapterRead2,AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT
OverrideCycles,Y151;I8N2;N2I8;Y151
FastqCompressionFormat,gzip
SoftwareVersion,4.1.27

[BCLConvert_Data]
Lane,Sample_ID,index,index2
1,TSPF-NA12878-10B-Rep1,CCGCGGTT,AGCGCTAG
1,TSPF-NA12878-10B-Rep1,TTATAACC,GATATCGA
1,TSPF-NA12878-10B-Rep1,GGACTTGG,CGCAGACG
1,TSPF-NA12878-10B-Rep1,AAGTCCAA,TATGAGTA
1,TSPF-NA12878-10B-Rep1,ATCCACTG,AGGTGCGT
1,TSPF-NA12878-10B-Rep1,GCTTGTCA,GAACATAC
1,TSPF-NA12878-10B-Rep1,CAAGCTAG,ACATAGCG
1,TSPF-NA12878-10B-Rep1,TGGATCGA,GTGCGATA
1,TSPF-NA12878-10B-Rep2,AGTTCAGG,CCAACAGA
1,TSPF-NA12878-10B-Rep2,GACCTGAA,TTGGTGAG
1,TSPF-NA12878-10B-Rep2,TCTCTACT,CGCGGTTC
1,TSPF-NA12878-10B-Rep2,CTCTCGTC,TATAACCT
1,TSPF-NA12878-10B-Rep2,CCAAGTCT,AAGGATGA
1,TSPF-NA12878-10B-Rep2,TTGGACTC,GGAAGCAG
1,TSPF-NA12878-10B-Rep2,GGCTTAAG,TCGTGACC
1,TSPF-NA12878-10B-Rep2,AATCCGGA,CTACAGTT
1,TSPF-NA12878-10B-Rep3,TAATACAG,ATATTCAC
1,TSPF-NA12878-10B-Rep3,CGGCGTGA,GCGCCTGT
1,TSPF-NA12878-10B-Rep3,ATGTAAGT,ACTCTATG
1,TSPF-NA12878-10B-Rep3,GCACGGAC,GTCTCGCA
1,TSPF-NA12878-10B-Rep3,GGTACCTT,AAGACGTC
1,TSPF-NA12878-10B-Rep3,AACGTTCC,GGAGTACT
1,TSPF-NA12878-10B-Rep3,GCAGAATT,ACCGGCCA
1,TSPF-NA12878-10B-Rep3,ATGAGGCC,GTTAATTG

[Cloud_Settings]
GeneratedVersion,0.0.0
Cloud_Workflow,ica_workflow_1
BCLConvert_Pipeline,urn:ilmn:ica:pipeline:bf93b5cf-cb27-4dfa-846e-acd6eb081aca#BclConvert_v4_2_7

[Cloud_Data]
Sample_ID,LibraryName,LibraryPrepKitName,IndexAdapterKitName
TSPF-NA12878-10B-Rep1,TSPF-NA12878-10B-Rep1_AAGTCCAA_TATGAGTA,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep1,TSPF-NA12878-10B-Rep1_ATCCACTG_AGGTGCGT,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep1,TSPF-NA12878-10B-Rep1_CAAGCTAG_ACATAGCG,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep1,TSPF-NA12878-10B-Rep1_CCGCGGTT_AGCGCTAG,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep1,TSPF-NA12878-10B-Rep1_GCTTGTCA_GAACATAC,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep1,TSPF-NA12878-10B-Rep1_GGACTTGG_CGCAGACG,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep1,TSPF-NA12878-10B-Rep1_TGGATCGA_GTGCGATA,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep1,TSPF-NA12878-10B-Rep1_TTATAACC_GATATCGA,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep2,TSPF-NA12878-10B-Rep2_AATCCGGA_CTACAGTT,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep2,TSPF-NA12878-10B-Rep2_AGTTCAGG_CCAACAGA,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep2,TSPF-NA12878-10B-Rep2_CCAAGTCT_AAGGATGA,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep2,TSPF-NA12878-10B-Rep2_CTCTCGTC_TATAACCT,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep2,TSPF-NA12878-10B-Rep2_GACCTGAA_TTGGTGAG,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep2,TSPF-NA12878-10B-Rep2_GGCTTAAG_TCGTGACC,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep2,TSPF-NA12878-10B-Rep2_TCTCTACT_CGCGGTTC,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep2,TSPF-NA12878-10B-Rep2_TTGGACTC_GGAAGCAG,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep3,TSPF-NA12878-10B-Rep3_AACGTTCC_GGAGTACT,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep3,TSPF-NA12878-10B-Rep3_ATGAGGCC_GTTAATTG,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep3,TSPF-NA12878-10B-Rep3_ATGTAAGT_ACTCTATG,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep3,TSPF-NA12878-10B-Rep3_CGGCGTGA_GCGCCTGT,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep3,TSPF-NA12878-10B-Rep3_GCACGGAC_GTCTCGCA,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep3,TSPF-NA12878-10B-Rep3_GCAGAATT_ACCGGCCA,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep3,TSPF-NA12878-10B-Rep3_GGTACCTT_AAGACGTC,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes
TSPF-NA12878-10B-Rep3,TSPF-NA12878-10B-Rep3_TAATACAG_ATATTCAC,TruSeqDNAPCRFree,TruSeqDnaUDIndexes96Indexes

Testing your outputs

The v2-samplesheet-maker will validate that your parameters are the correct type, the correct name AND within the appropriate range. It will NOT however determine if your settings are appropriate or compatible with a BCLConvert run, i.e it will NOT ensure that your indexes have an appropriate hamming distance.

If you wish to validate your output samplesheet with BCLConvert, you can use the following script -

scripts/build-samplesheet-and-validate-with-bcl-convert.sh <input-json> [docker-image]. This will convert the input json to csv and then run the docker container bclconvert against your samplesheet.

You will need both jq and docker installed for this to work.

Additional Usage

Parsing a SampleSheet CSV to JSON

We also have created a parser between the csv and json, with the following usage syntax

v2-samplesheet-to-json SampleSheet.csv -

Input SampleSheet CSV

Click to expand!
[Header]
FileFormatVersion,2
RunName,my-illumina-sequencing-run
RunDescription,A test run
InstrumentPlatform,NovaSeq 6000
InstrumentType,NovaSeq

[Reads]
Read1Cycles,151
Read2Cycles,151
Index1Cycles,10
Index2Cycles,10

[BCLConvert_Settings]
AdapterBehavior,trim
BarcodeMismatchesIndex1,1
BarcodeMismatchesIndex2,1
MinimumAdapterOverlap,2
OverrideCycles,Y151;Y10;Y8N2;Y151
CreateFastqForIndexReads,False
NoLaneSplitting,False
FastqCompressionFormat,gzip

[BCLConvert_Data]
Lane,Sample_ID,index,index2,Sample_Project
1,MyFirstSample,AAAAAAAAAA,CCCCCCCC,SampleProject
1,MySecondSample,GGGGGGGGGG,TTTTTTTT,SampleProject

Gives us

Click to expand!
{
  "header": {
    "file_format_version": 2,
    "run_name": "my-illumina-sequencing-run",
    "run_description": "A test run",
    "instrument_platform": "NovaSeq 6000",
    "instrument_type": "NovaSeq"
  },
  "reads": {
    "read_1_cycles": 151,
    "read_2_cycles": 151,
    "index_1_cycles": 10,
    "index_2_cycles": 10
  },
  "bclconvert_settings": {
    "adapter_behavior": "trim",
    "barcode_mismatches_index_1": 1,
    "barcode_mismatches_index_2": 1,
    "minimum_adapter_overlap": 2,
    "override_cycles": "Y151;Y10;Y8N2;Y151",
    "create_fastq_for_index_reads": false,
    "no_lane_splitting": false,
    "fastq_compression_format": "gzip"
  },
  "bclconvert_data": [
    {
      "lane": 1,
      "sample_id": "MyFirstSample",
      "index": "AAAAAAAAAA",
      "index2": "CCCCCCCC",
      "sample_project": "SampleProject"
    },
    {
      "lane": 1,
      "sample_id": "MySecondSample",
      "index": "GGGGGGGGGG",
      "index2": "TTTTTTTT",
      "sample_project": "SampleProject"
    }
  ]
}

Manipulating a samplesheet by parsing through JSON

For this component, you will need some basic knowledge of the jq command line tool.

In this example we are given a standard samplesheet but want to edit the adapters for one of the samples.

Whilst we could do this with grep, sed or awk, it's a little hacky, instead we can

  1. Parse the samplesheet to json to stdout
  2. Use jq to update the samplesheet
  3. Write out the updated samplesheet to csv
# Initialise new index variable
NEW_I7_INDEX="TTTTTTTTTT"
SAMPLE_ID="MySecondSample"

# Convert the SampleSheet to JSON
# Update the index for the sample "MySecondSample" in the bclconvert_data section
# Write out the new samplesheet to csv
v2-samplesheet-to-json SampleSheet.csv - | \
jq --raw-output \
  --arg sample_id "${SAMPLE_ID}" \
  --arg replacement_index "${NEW_I7_INDEX}" \
  '
    .bclconvert_data=( 
      .bclconvert_data |
      map(
        if .sample_id == $sample_id then
          .index = $replacement_index
        else
          .
        end
      )
    )
  ' | \
v2-samplesheet-maker - SampleSheet.updated_index.csv 

Gives us the following samplesheet as an output

[Header]
FileFormatVersion,2
RunName,my-illumina-sequencing-run
RunDescription,A test run
InstrumentPlatform,NovaSeq 6000
InstrumentType,NovaSeq

[Reads]
Read1Cycles,151
Read2Cycles,151
Index1Cycles,10
Index2Cycles,10

[BCLConvert_Settings]
AdapterBehavior,trim
BarcodeMismatchesIndex1,1
BarcodeMismatchesIndex2,1
MinimumAdapterOverlap,2
OverrideCycles,Y151;Y10;Y8N2;Y151
CreateFastqForIndexReads,False
NoLaneSplitting,False
FastqCompressionFormat,gzip

[BCLConvert_Data]
Lane,Sample_ID,index,index2,Sample_Project
1,MyFirstSample,AAAAAAAAAA,CCCCCCCC,SampleProject
1,MySecondSample,TTTTTTTTTT,TTTTTTTT,SampleProject

If we run a diff on our original and updated samplesheet, we can see that the index for "MySecondSample" has been updated.

diff SampleSheet.csv SampleSheet.updated_index.csv

Yields

27c27
< 1,MySecondSample,GGGGGGGGGG,TTTTTTTT,SampleProject
---
> 1,MySecondSample,TTTTTTTTTT,TTTTTTTT,SampleProject

Contributing

Is there a missing section you'd like to see?

You can generate your own sections by

  1. Forking this repository.
  2. Adding the section pydantic model to the section models module
  3. Extending the SampleSheel pydantic model in the samplesheet models module
  4. Generating a class for your section in the section class module
  5. Extending the SampleSheet class to write out your section in the samplesheet class module
  6. Add a test for your section in the test_sections module
  7. Generating a PR back to this repository! ( Please squash your commits :) )

Release Cycles

We try and update this repository for every new Dragen Release (which coincides with a BCLConvert release) and tag accordingly.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file v2_samplesheet_maker-4.2.4.post20241110133537.tar.gz.

File metadata

File hashes

Hashes for v2_samplesheet_maker-4.2.4.post20241110133537.tar.gz
Algorithm Hash digest
SHA256 eb2297089eb573229abe2716786d85dcf90f1b4fd74c4efc5fdc22923979ec75
MD5 5f6547fdfa6f42c6c1c50a54a5f8984a
BLAKE2b-256 8aa600f9ee55794a5266a99694a09aadb8b5b4d2f30e2d1280f3cd59f79b1244

See more details on using hashes here.

File details

Details for the file v2_samplesheet_maker-4.2.4.post20241110133537-py3-none-any.whl.

File metadata

File hashes

Hashes for v2_samplesheet_maker-4.2.4.post20241110133537-py3-none-any.whl
Algorithm Hash digest
SHA256 ed98efdfefceeff85d3d074509c8f3822516c680ee49e84e2903b90b59d6f1b3
MD5 15e8cf55f8dc55c463a47542967781aa
BLAKE2b-256 c1b5b37f33656ce53760c0758d551f4c3029e603277af33c1a9410aafd0ec806

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page