Skip to main content

VA-AM method implementation

Project description

VA-AM

Documentation#

The documentation is available here.

Description#

VA-AM is a Python package based on the deep learning enhancement of the classical statistical Analogue Method. It provides several tools to analyse climatological extreme events, particularly heat waves (HW from now on).

It alows you to perform the identification of the HW following Russo index, use the classical Analogue Method, use the enhanced Variational Autoencoder Analogue Method, and even define own/use diferent deep learning architectures for the Analogue search.

Installation#

Latest version:

Using pip

pip install va_am

Using conda

conda install -c conda-forge va_am

Latest commit:

pip install git+https://github.com/cosminmarina/va_am

Getting Started#

VA-AM can be used inside a python code as library, or directly outside of the code, as a executable. See both options:

Outside of code#

A quick way of using it directly from your terminal. First try the -h | --help flag as:

python -m va_am -h

Note

You should obtain something like:

usage: __main__.py [-h] [-i] [-m METHOD] [-f CONF] [-sf SECRET] [-v] [-t]
           [-p PERIOD] [-sr]

optional arguments:
-h, --help            show this help message and exit
-i, --identifyhw      Flag. If true, first, identify the heatwave period
                        and, then, apply the 'method' if is one of: 'days',
                        'seasons', 'execs', 'latents', 'seasons-execs',
                        'latents-execs' or 'latents-seasons-execs'
-m METHOD, --method METHOD
                        Specify an method to execute between: 'day' (default),
                        'days', 'seasons', 'execs', 'latents', 'seasons-
                        execs', 'latents-execs' or 'latents-seasons-execs'
-f CONF, --configfile CONF
                        JSON file with configuration of parameters. If not
                        specified and 'method' require the file, it will be
                        searched at 'params.json'
-sf SECRET, --secretfile SECRET
                        Path to TXT file with needed information of the
                        Telegram bot to use to WARN and advice about
                        Exceptions. If not specified and 'method' require the
                        file, it will be searched at 'secret.txt'
-v, --verbose         Flag. If true, overwrite verbose param.
-t, --teleg           Flag. If true, exceptions and warnings will be sent to
                        Telegram Bot.
-p PERIOD, --period PERIOD
                        Specify the period where to perform the operations
                        between: 'both' (default), 'pre' or 'post'
-sr, --savereconstruction
                        Flag. If true, the reconstruction per iteration would
                        be saved in ./../../data/ folder as an
                        reconstruction-[name]-[day]-[period]-[AM/VA-AM].nc
                        file.

Inside of code#

You can import va_am as a library in your code and use the equivalent method:

from va_am import

# Perform Variational Autoencoder Analogue search with default args
va_am()

or

import va_am

# Perform Variational Autoencoder Analogue search with default args
va_am.va_am()

Note

The arguments of va_am() method are the same as the outside of code version. For more details see the API reference.

Collaboration#

If you find any bugs/issues or have any suggestions, please open an issue.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

va_am-0.0.4.tar.gz (58.7 kB view details)

Uploaded Source

Built Distribution

va_am-0.0.4-py3-none-any.whl (46.8 kB view details)

Uploaded Python 3

File details

Details for the file va_am-0.0.4.tar.gz.

File metadata

  • Download URL: va_am-0.0.4.tar.gz
  • Upload date:
  • Size: 58.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.12

File hashes

Hashes for va_am-0.0.4.tar.gz
Algorithm Hash digest
SHA256 686f88946a46e58282404a50cb3a40e914828ca601bbce46e2d6150ab778ef5e
MD5 8fcfb99c46745160f5e2047fc9ecfa54
BLAKE2b-256 245ed4d6c23ed42d3f528cf8691e7e698d5349e23dd0673346bbdcca13e7e8b2

See more details on using hashes here.

File details

Details for the file va_am-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: va_am-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 46.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.12

File hashes

Hashes for va_am-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 4622fe266004f69f835ed054a7014379e8e878d3b259803e9f7158ea80ce3879
MD5 49a87e1b35455127ceca65c104cbbd77
BLAKE2b-256 feeb7172658f71ecb52539ab828f41ac6b2cb05baeb46f51b586eb1758d87caa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page