Verbal autopsy data consistency checks (from InterVA algorithm).
Project description
vacheck
Data consistency checks for verbal autopsy (VA) data collected using the WHO VA instrument.
>>> from vacheck.datacheck5 import datacheck5, get_example_input
>>> input = get_example_input()
>>> input.head
<bound method NDFrame.head of ID i004a i004b i019a i019b i022a i022b i022c i022d i022e ... i450o i451o i452o i453o i454o i455o i456o i457o i458o i459o
0 d1 NaN NaN 1.0 NaN 1.0 NaN NaN 0 0 ... 0 0 0 0 0 0 0 0 0 0
1 d2 NaN NaN NaN 1.0 1.0 NaN NaN 0 0 ... 0 0 0 0 0 0 0 0 0 0
2 d3 NaN NaN 1.0 NaN NaN 1.0 NaN 0 0 ... 0 0 0 0 0 0 0 0 0 0
3 d4 NaN NaN NaN 1.0 NaN NaN 1.0 0 0 ... 0 0 0 0 0 0 0 0 0 0
4 d5 NaN NaN 1.0 NaN NaN NaN 1.0 0 0 ... 0 0 0 0 0 0 0 0 0 0
.. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
195 d196 NaN NaN NaN 1.0 NaN NaN 1.0 0 0 ... 0 0 0 0 0 0 0 0 0 0
196 d197 NaN NaN 1.0 NaN 1.0 NaN NaN 0 0 ... 0 0 0 0 0 0 0 0 0 0
197 d198 NaN NaN 1.0 NaN 1.0 NaN NaN 0 0 ... 0 0 0 0 0 0 0 0 0 0
198 d199 NaN NaN NaN 1.0 1.0 NaN NaN 0 0 ... 0 0 0 0 0 0 0 0 0 0
199 d200 NaN NaN NaN 1.0 1.0 NaN NaN 0 0 ... 0 0 0 0 0 0 0 0 0 0
[200 rows x 354 columns]>
>>> pb = get_probbase()
>>> checked_input = datacheck5(va_input=input.iloc[0], va_id=input.at[0, "ID"], probbase=pb)
>>> checked_input.get("output")
ID d1
i004a NaN
i004b NaN
i019a 1.0
i019b NaN
...
i455o 0
i456o 0
i457o 0
i458o 0
i459o 0
Name: 0, Length: 354, dtype: object
>>> checked_input.get("first_pass")[0]
'd1 W610104-o (ever cry) only required for neonates - cleared in working information'
>>> checked_input.get("second_pass")
[]
>>> # run checks on entire DataFrame (takes a few seconds for 200 records)
>>> check_all = input.apply(lambda x: datacheck5(x, x.ID, probbase=pb)["output"], axis=1)
>>> check_all
ID i004a i004b i019a i019b i022a i022b i022c i022d i022e ... i450o i451o i452o i453o i454o i455o i456o i457o i458o i459o
0 d1 NaN NaN 1.0 NaN 1.0 NaN NaN 0 0 ... 0 0 0 0 0 0 0 0 0 0
1 d2 NaN NaN NaN 1.0 1.0 NaN NaN 0 0 ... 0 0 0 0 0 0 0 0 0 0
2 d3 NaN NaN 1.0 NaN NaN 1.0 NaN 0 0 ... 0 0 0 0 0 0 0 0 0 0
3 d4 NaN NaN NaN 1.0 NaN NaN 1.0 0 0 ... 0 0 0 0 0 0 0 0 0 0
4 d5 NaN NaN 1.0 NaN NaN NaN 1.0 0 0 ... 0 0 0 0 0 0 0 0 0 0
.. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
195 d196 NaN NaN NaN 1.0 NaN NaN 1.0 0 0 ... 0 0 0 0 0 0 0 0 0 0
196 d197 NaN NaN 1.0 NaN 1.0 NaN NaN 0 0 ... 0 0 0 0 0 0 0 0 0 0
197 d198 NaN NaN 1.0 NaN 1.0 NaN NaN 0 0 ... 0 0 0 0 0 0 0 0 0 0
198 d199 NaN NaN NaN 1.0 1.0 NaN NaN 0 0 ... 0 0 0 0 0 0 0 0 0 0
199 d200 NaN NaN NaN 1.0 1.0 NaN NaN 0 0 ... 0 0 0 0 0 0 0 0 0 0
[200 rows x 354 columns]
Details
With the development of the InterVA algorithm,
several data consistency checks were designed to ensure that indicators and
symptoms do not indicate conflicting information (e.g., male and pregnant).
For example, the following are inconsistent:
- ageInDays: 10 days
- How long did (s)he have a cough: 4 weeks
The data checks try to reconcile inconsistencies like these. In the original software the data checks were defined in probbase.xls (the symptom-cause-information matrix with the conditional probabilities of each symptom given a cause -- see below for more information on the SCI, and the InterVA User's Guide).
Each type of consistency check is performed for each VA record, and then the process is repeated a second time.
Before the consistency checks are run, any VA record with missing information on age or sex are removed -- these indicators are necessary for running the InterVA and InSilicoVA algorithms.
How each data check is performed
There are 3 types of data consistency checks
-
Don't ask
- Necessary Conditions (for inconsistency)
- both symptoms have non-missing values
- index symptom == (Y or N) value in
subst
probbase column - symptom in the
dontaskX
probbase column == last character (Y or N) in that cell
(dontaskX
ranges fromdontask1
todontask8
)
- Action: index symptom is set to missing
- the log message is "(don't ask symptom) cleared in working information"
- Necessary Conditions (for inconsistency)
-
Ask if
- Necessary Conditions
- the index symptom == (Y or N) value in the
subst
probbase column (and thus not a missing value) - the symptom listed in the
doaskif
probbase column does not equal the last character in that cell
- the index symptom == (Y or N) value in the
- Action: assign the symptom listed in the
doaskif
to the last character (Y or N) in that cell (concatenated to the symptom label, e.g.,i022cY
) - the log message is "(ask if symptom label) updated in working information"
- Necessary Conditions
-
Neonates only
- Necessary Conditions
- index symptom == (Y or N) value in the
subst
probbase column (and thus index symptom does not have a missing value) - the decedent was NOT a neonate
- index symptom == (Y or N) value in the
- Action: assign the index symptom to missing
- the log message is "(index symptom) only required for neonates - cleared in working information"
- Necessary Conditions
probbase
Relevant columns in probbase.xls
- indic (column A)
- subst (column F)
- dontask1 - dontask8 (columns H - O)
- doaskif (column P)
- nnonly (column Q)
>>> from vacheck.datacheck5 import get_probbase
>>> probbase = get_probbase(replace_nan=False, replace_qdesc=False)
>>> probbase.iat[0, 2]
'probbase v18 20200403 '
>>> probbase.columns
Index(['indic', 'qdesc', 'sdesc', 'who_2016', 'ilab', 'subst', 'samb',
'dontask1', 'dontask2', 'dontask3', 'dontask4', 'dontask5', 'dontask6',
'dontask7', 'dontask8', 'doaskif', 'nnonly', 'a_nrp', 'a_pend_6w',
'a_preg', 'b_0101', 'b_0102', 'b_0103', 'b_0104', 'b_0105', 'b_0106',
'b_0107', 'b_0108', 'b_0109', 'b_0110', 'b_0111', 'b_0112', 'b_0199',
'b_0201', 'b_0202', 'b_0203', 'b_0204', 'b_0205', 'b_0299', 'b_0301',
'b_0302', 'b_0303', 'b_0401', 'b_0402', 'b_0403', 'b_0499', 'b_0501',
'b_0502', 'b_0601', 'b_0602', 'b_0701', 'b_0801', 'b_0901', 'b_0902',
'b_0903', 'b_0904', 'b_0905', 'b_0906', 'b_0907', 'b_0908', 'b_0999',
'b_1001', 'b_1002', 'b_1003', 'b_1004', 'b_1006', 'b_1099', 'b_1101',
'b_1102', 'b_1201', 'b_1202', 'b_1203', 'b_1204', 'b_1205', 'b_1206',
'b_1207', 'b_1208', 'b_1209', 'b_1210', 'b_1299', 'b_9800', 'c_cult',
'c_emer', 'c_hsys', 'c_inev', 'c_know', 'c_resr'],
dtype='object')
>>> probbase[["indic", "subst", "dontask1", "dontask8", "doaskif", "nnonly"]]
indic subst dontask1 dontask8 doaskif nnonly
1 prior NaN NaN NaN NaN NaN
2 i004a Y i004bY NaN NaN NaN
3 i004b Y i004aY NaN NaN NaN
4 i019a Y i019bY NaN NaN NaN
5 i019b Y i019aY NaN NaN NaN
.. ... ... ... ... ... ...
350 i455o Y NaN NaN NaN NaN
351 i456o Y NaN NaN NaN NaN
352 i457o Y NaN NaN NaN NaN
353 i458o N NaN NaN NaN NaN
354 i459o Y NaN NaN NaN NaN
[354 rows x 6 columns]
Examples
-
Don't ask
- Log message: "4 W610059-o (married) value inconsistent with W610022-a (65+) - cleared in working information"
- VA record ID is 4
i059o
- Was she married at the time of death? (withsubst == Y
)i022a
- Was s(he) aged 65 years or more at death?dontask6
-i022aY
(don't ask item for index symptomi059o
ifi022a == Y
)- action:
i059a
is changed (in the working copy of the data) from Y to missing
-
Ask If
- Log message: "7 W610152-o (fev nsw) not flagged in category W610147-o (fever) - updated in working information"
- VA record ID is 7
i152o
- Did (s)he have night sweats? (withsubst == Y
)i147o
- During the illness that led to death, did (s)he have a fever?doaskif
- do aski152o
ifi147o == Y
- action
i147o
is changed from missing to Y
-
Neonates only
- Log message: "103075 W610394-a (born 1st pr) only required for neonates - cleared in working information"
- VA record ID is 103075
i394a
- Was this baby born from the mother's first pregnancy?- VA record was not a neonatal death
- action
i394a
is set to missing
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file vacheck-0.0.3.tar.gz
.
File metadata
- Download URL: vacheck-0.0.3.tar.gz
- Upload date:
- Size: 52.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bdf4e9683051b0ff21ca7b7bfa940744d2ae7fb17b2d39885fe042479e03900d |
|
MD5 | 18bcfd7df12220ad6345f87a1a972d5d |
|
BLAKE2b-256 | e2126b652250214c4e5d738a1becc1c8e9778dfc3fe2179d1b1d6252f8e7ccab |
File details
Details for the file vacheck-0.0.3-py3-none-any.whl
.
File metadata
- Download URL: vacheck-0.0.3-py3-none-any.whl
- Upload date:
- Size: 50.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a8f5445b6a2027310db69f6bf8773980c50c0528262a602faf56ad7f48435735 |
|
MD5 | 4af9cbab81a7f3074b2f3b1f28d501f9 |
|
BLAKE2b-256 | 566d2cc38f2d5d1c1b2ed157e3ae258b898fa3beff869f5580494cc035b482f5 |