Skip to main content

Pytorch/TF1 implementation of Variational AutoEncoder for anomaly detection following the paper "Variational Autoencoder based Anomaly Detection using Reconstruction Probability by Jinwon An, Sungzoon Cho"

Project description

The author of this package has not provided a project description

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vae_anomaly_detection-1.1.0.tar.gz (7.4 kB view details)

Uploaded Source

Built Distribution

vae_anomaly_detection-1.1.0-py3-none-any.whl (8.1 kB view details)

Uploaded Python 3

File details

Details for the file vae_anomaly_detection-1.1.0.tar.gz.

File metadata

  • Download URL: vae_anomaly_detection-1.1.0.tar.gz
  • Upload date:
  • Size: 7.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.13 CPython/3.9.10 Linux/5.11.0-1028-azure

File hashes

Hashes for vae_anomaly_detection-1.1.0.tar.gz
Algorithm Hash digest
SHA256 5f05d340712d8c3a5a7b24ae9644615c76073242caa2205b92d9cfc4e3f62811
MD5 73b11621e5697d1ccff3c19d8d6563eb
BLAKE2b-256 3d5711c6419fe47c47ab6ce64fae67df68624ad158bba97750f8afbb5d2c4704

See more details on using hashes here.

File details

Details for the file vae_anomaly_detection-1.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for vae_anomaly_detection-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 cddf4403fb931b579122df88c795bf1b8cfc4fdb84486b695bf60a54ee0b2159
MD5 9ab07ec48a4ef105b0cc0eef509712f6
BLAKE2b-256 650088784940ef344e2516121fe79a39ba692a21fca86f500dc7d4849c01c512

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page