Skip to main content

Virtual AI Simulator runs agents and players across multiple worlds

Project description

https://travis-ci.org/acutesoftware/virtual-AI-simulator.svg?branch=master https://coveralls.io/repos/acutesoftware/virtual-AI-simulator/badge.svg?branch=master&service=github Code Health Code Climate Requirements Status

VAIS runs simulations of agents and players across multiple worlds

create a random world

# planet parameters are: num_seeds, width, height, wind, rain, sun, lava
p = planet.Planet('Test Planet', 5,    60,     45,  0.2, 0.20, 0.2, 0.5)
p.evolve(100)
print(p)

View the world

fldr = os.getcwd() + os.sep + 'data'  + os.sep + 'worlds'
view_world.display_map(fldr + os.sep + 'ExamplePlanet.txt')

create a character manually

stats = {'Health':20,'max_health':20,'INT':8,'STA':5,'STR':2,'AGI':5}
c1 = character.Character( 'Jim', 'Orc', 'Mage', stats, ['cast'], 'Test', ['bag'])
print(c1)

    CHARACTER = Jim
    Race      = Orc
    Class     = Mage
    STATS     = STA:5 AGI:5 INT:8 Health:20 max_health:20 STR:2
    Story     = Example char
    SKILLS    = cast
    INVENTORY = bag

Create a 2nd random character and battle them

traits = character.CharacterCollection(character.fldr)
rules = battle.BattleRules('battle.rules')
c2 = traits.generate_random_character()
b = battle.Battle(c1, c2, traits, rules, print_console='Yes')
print(b.status + ' Wins')

    Jim [100%] hits Crador [100%] for 4
    Crador  [80%] hits Jim [100%] for 4
    Jim  [80%] miss Crador  [80%]
    Crador  [80%] hits Jim  [80%] for 4
    Jim  [60%] CRIT Crador  [80%] for 12
    Crador  [20%] hits Jim  [60%] for 4
    Jim  [40%] hits Crador  [20%] for 4
    Jim Wins

Simulate 10,000 fights

sim = battle.BattleSimulator(c1, c2, traits, rules, 10000)
print(sim)

    After 10000 fights Jim wins!
    Jim = 9158 (92%)
    Crador = 842 (8%)

Project details


Release history Release notifications

This version
History Node

0.0.7

History Node

0.0.6

History Node

0.0.3

History Node

0.0.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
vais-0.0.7.tar.gz (46.9 kB) Copy SHA256 hash SHA256 Source None Feb 7, 2017

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page