Skip to main content

Python object validator

Project description

https://travis-ci.org/thisfred/val.svg?branch=master https://coveralls.io/repos/thisfred/val/badge.svg?branch=master

A validator for arbitrary Python objects. Works with Python 2 and 3.

http://thisfred.github.io/val.jpg

Inspired by some of the wonderful ideas in schema and flatland, many of which I outright stole.

The goal is to make validation faster than either, while keeping the very pythonic and minimal style of schema , at the expense of more advanced features.

Current status is: used in production code, but only in one place that I know of.

I have not optimized much, but for the kind of schemas I need (specifically: to validate JSON that has been loaded into python structures as part of a REST API,) I have some anecdotal evidence that it’s around ten times faster than both schema and flatland. (Again, that is mostly because it does way less.)

The schemas understood by val are very similar to the ones in schema , but not 100% compatible.

Syntax

Elements that can occur in a schema are:

Literals

Simple literal values will match equal values:

>>> from val import Schema
>>> Schema(12).validates(12)
True

>>> Schema('foo').validates('foo')
True

Types

Types and classes will validate anything that is an instance of the type:

>>> Schema(int).validates(12)
True

>>> Schema(str).validates('foo')
True

>>> Schema(str).validates('fnørd')
True

>>> Schema(list).validates([12, 'foo'])
True

>>> Schema(dict).validates({'foo': 12})
True

>>> class Foo(object):
...     pass

>>> instance = Foo()
>>> Schema(Foo).validates(instance)
True

>>> class SubClass(Foo):
...     pass

>>> subclass_instance = SubClass()
>>> Schema(Foo).validates(subclass_instance)
True

>>> schema = Schema(object)
>>> all(schema.validates(thing) for thing in [
...     instance, (12, 43, 'strawberries'), {}])
True

Lists

Lists will validate list values all of whose elements are validated by at least one of the elements in the schema (order or number of elements do not matter, see Ordered()):

>>> Schema([str, int]).validates([12, 'foo', 'bar', 'baz', 42])
True

>>> schema = Schema(['foo', 'bar', 13])
>>> schema.validates(['foo'])
True

>>> schema.validates(['foo', 13])
True

>>> schema.validates(['bar', 'bar', 13, 'bar'])
True

Dictionaries

Dictionaries will validate dictionaries all of whose key value pairs are validated by at least one of the key value pairs in the schema, and that are not missing any of the keys specified (unless they are specified as Optional()):

>>> schema = Schema({'foo': int, str: int})
>>> schema.validates({'foo': 83})
True

>>> schema.validates({'foo': 12, 'bar': 888, 'baz': 299})
True

>>> schema.validate({'foo': 'bar'})
Traceback (most recent call last):
     ...
val.NotValid: 'foo': 'bar' is not of type <class 'int'>

>>> schema.validate({'qux': 19})
Traceback (most recent call last):
   ...
val.NotValid: missing key: 'foo'

>>> schema.validate({'foo': 21, 12: 'bar'})
Traceback (most recent call last):
   ...
val.NotValid: 12: 'bar' not matched

Callables

Callables (that aren’t of type type) will validate any value for which the callable returns a truthy value. TypeErrors or ValueErrors in the call will result in a NotValid exception:

>>> schema = Schema(lambda x: x < 10)
>>> schema.validates(9)
True

>>> schema.validate(10)
Traceback (most recent call last):
    ...
val.NotValid: 10 invalidated by '<lambda>'

To get nicer error messages, use functions rather than lambdas (if the function has a doc string it will be used in the error message, otherwise the name of the funtion will):

>>> def less_than_ten(n):
...     """Must be less than 10."""
...     return n < 10

>>> schema = Schema(less_than_ten)
>>> schema.validates(9)
True

>>> schema.validate(10)
Traceback (most recent call last):
    ...
val.NotValid: 10 invalidated by 'Must be less than 10.'

Convert()

Convert(callable) will call the callable on the value being validated, and substitute the result of that call for the original value in the validated structure. TypeErrors or ValueErrors in the call will result in a NotValid exception. This or supplying Default Values are the only ways to modify the data during validation. For that reason it should be used sparingly.

Convert is useful to convert between representations (for instance from timestamps to datetime objects, or uuid string representations to uuid objects, etc.):

>>> from val import Convert
>>> schema = Schema(Convert(int))
>>> schema.validate('12')
12

>>> schema.validate(42.34)
42

>>> schema.validate('foo')
Traceback (most recent call last):
    ...
val.NotValid: invalid literal for int() with base 10: 'foo'

Or()

Or(element1, element2, ...) will validate a value validated by any of the elements passed into the Or:

>>> from val import Or
>>> schema = Or('foo', int)
>>> schema.validates('foo')
True

>>> schema.validates(12)
True

>>> schema.validate('bar')
Traceback (most recent call last):
    ...
val.NotValid: 'bar' is not equal to 'foo', 'bar' is not of type <class 'int'>

And()

And(element1, element2, ...) will validate a value validated by all of the elements passed into the And:

>>> from val import And
>>> schema = And(Convert(int), lambda x: x < 12, lambda x: x >= 3)
>>> schema.validate('3')
3

>>> schema.validate(11.6)
11

>>> schema.validate('12')
Traceback (most recent call last):
    ...
val.NotValid: 12 invalidated by '<lambda>'

>>> schema.validate(42.77)
Traceback (most recent call last):
    ...
val.NotValid: 42 invalidated by '<lambda>'

>>> schema.validate('foo')
Traceback (most recent call last):
    ...
val.NotValid: invalid literal for int() with base 10: 'foo'

Optional()

{Optional(simple_literal_key): value} will match any key value pair that matches simple_literal_key: value but the schema will still validate dictionary values with no matching key.

>>> from val import Optional
>>> schema = Schema({Optional('foo'): 12})
>>> schema.validates({'foo': 12})
True

>>> schema.validates({})
True

>>> schema.validate({'foo': 13})
Traceback (most recent call last):
    ...
val.NotValid: 'foo': 13 is not equal to 12

>>> schema.validate({'foo': 'bar'})
Traceback (most recent call last):
    ...
val.NotValid: 'foo': 'bar' is not equal to 12

Ordered()

Ordered([element1, element2, element3]) will validate a list with exactly 3 elements, each of which must be validated by the corresponding element in the schema. If order and number of elements do not matter, just use Lists:

>>> from val import Ordered
>>> schema = Ordered([int, str, int, None])
>>> schema.validates([12, 'fnord', 42, None])
True

>>> schema.validate(['fnord', 42, None, 12])
Traceback (most recent call last):
    ...
val.NotValid: 'fnord' is not of type <class 'int'>

>>> schema.validate([12, 'fnord', 42, None, 12])
Traceback (most recent call last):
    ...
val.NotValid: [12, 'fnord', 42, None, 12] does not have exactly 4 values. (Got 5.)

Parsed Schemas

Other parsed schema objects. So this works:

>>> sub_schema = Schema({'foo': str, str: int})
>>> schema = Schema(
...     {'key1': sub_schema,
...      'key2': sub_schema,
...      str: sub_schema})

>>> schema.validates({
...     'key1': {'foo': 'bar'},
...     'key2': {'foo': 'qux', 'baz': 43},
...     'whatever': {'foo': 'doo', 'fsck': 22, 'tsk': 2992}})
True

FAQ

How do I validate only some of the keys in a dictionary?

Often when validating input there will be values present that your code doesn’t act upon, and doesn’t care about the presence or absence of. You can make your schema similarly indifferent by adding str: object (assuming the keys in the dictionary are all strings, like they are when your data comes from JSON. If even the type of the keys is variable, you can use object: object.) This will match and validate any keys in the dictionary that you didn’t explicitly specify.

>>> schema = Schema({
...     'username': str,
...     'password': str,
...     str: object})

>>> schema.validates({
...     'username': 'bob',
...     'password': 'hella rancid hazelnuts',
...     'shopping_cart': {
...         'contents': ['Meet the Parens: A Lisp primer.']}})
True

>>> schema.validate({
...     'username': 'connie',
...     'goldfish': 12})
Traceback (most recent call last):
     ...
val.NotValid: missing key: 'password'

Advanced Topics

Default Values

One can supply a default value to any (subclass of) Schema, which will be used in place of the validated value if that evaluates to False.

>>> schema = Schema(str, default='default value')
>>> schema.validate('supplied value')
'supplied value'

>>> schema.validate('')
'default value'

Note that the original value must still be valid for the schema, so this will not work:

>>> schema.validates(None)
False

But this will:

>>> schema = Or(str, None, default='default value')
>>> schema.validate(None)
'default value'

Default values will also work for dictionary keys that are specified as Optional:

>>> schema = Schema(
...     {'foo': str,
...      Optional('bar'): Or(int, None, default=23)})

>>> schema.validate({'foo': 'yes'}) == {'bar': 23, 'foo': 'yes'}
True

Additional Validators

Sometimes it is useful to do validation that depends on multiple parts of the data at once. For this purpose, Schemas can be initialized with additional validators.

>>> def maximum_total(value):
...     """The total sum must not exceed 500."""
...     return sum(value.values()) <= 500

>>> schema = Schema({str: int}, additional_validators=(maximum_total,))
>>> schema.validates({'foo': 12, 'bar': 400})
True

>>> schema.validate({'foo': 250, 'bar': 251})
Traceback (most recent call last):
     ...
val.NotValid: ... invalidated by 'The total sum must not exceed 500.'

Serializing Schemas

When your application receives JSON from clients, it can be useful to define explicit schemas that those clients have to abide by. Pointing to source code isn’t an especially great way to communicate to other developers what is or isn’t considered valid JSON by your application, especially if they aren’t developing in Python. For this purpose, teleport, a lightweight JSON format to describe schemas, is better suited.

A subset of valid val schemas is serializable/exportable to teleport. Note that things like default values and additional validators will be lost when serializing to teleport, because it has no way to express them.

Combining doctests with this serialization provides a way to specify what your application considers valid, and verify in your tests that you didn’t unintentionally break clients’ assumptions.

If your code contains the following schema for todo items:

>>> todo = Schema({
...     "task": str,
...     Optional("priority"): int,
...     Optional("status"): str})

Then in your API documentation you could use the document() helper and have doctests verify the output, as is the case here.

>>> from val import tp
>>> print(tp.document(todo))
{
  "Struct": {
    "optional": {
      "priority": "Integer",
      "status": "String"
    },
    "required": {
      "task": "String"
    }
  }
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

val-0.6.tar.gz (12.1 kB view details)

Uploaded Source

Built Distribution

val-0.6-py2.py3-none-any.whl (16.7 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file val-0.6.tar.gz.

File metadata

  • Download URL: val-0.6.tar.gz
  • Upload date:
  • Size: 12.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for val-0.6.tar.gz
Algorithm Hash digest
SHA256 6a04b3936e128f3b75149058879434bf60e9b8de7e4ef09950cdcca9870fdb18
MD5 27515dd319949b48f34ea4f453dfa850
BLAKE2b-256 85db9f404cb0b2ebbfbef3fd5fd0cb1cb7c57f483491661f3760e41b3ca49253

See more details on using hashes here.

File details

Details for the file val-0.6-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for val-0.6-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 ac1cbbd956d1215549e1ad81b91750020acb759ece97a190aea88f1ac260cc49
MD5 bd81f8fed4f0955ababf091ebd3c7fa0
BLAKE2b-256 0f9a3342c7c05f879a6598f8bf7eee53a8d78128064667f84d636fa904f0a1d1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page