Python object validator
Project description
A validator for arbitrary Python objects.
Inspired by some of the wonderful ideas in schema and flatland, many of which I outright stole.
The goal is to make validation faster than either, while keeping the very pythonic and minimal style of schema , at the expense of more advanced features.
Current status is: used in production code, but only in one place that I know of.
I have not optimized much, but for the kind of schemas I need (specifically: to validate JSON that has been loaded into python structures as part of a REST API,) I have some anecdotal evidence that it’s around ten times faster than both schema and flatland. (Again, that is mostly because it does way less.)
The schemas understood by val are very similar to the ones in schema , but not 100% compatible:
>>> from val import Schema, Or, Optional
>>> schema = Schema({
... 'invisible': bool,
... 'immutable': bool,
... Optional('favorite_colors'): [str],
... Optional('favorite_foods'): [str],
... 'lucky_number': Or(int, None),
... 'shoe_size': int,
... 'mother': {
... 'name': str,
... 'nested': {'id': str}},
... Optional('father'): {
... 'name': str,
... 'nested': {'id': str}}})
Syntax
Elements that can occur in a schema are:
Literals
Simple literal values will match equal values:
>>> Schema(12).validates(12)
True
>>> Schema('foo').validates('foo')
True
Types
Types will validate anything that is an instance of the type:
>>> Schema(int).validates(12)
True
>>> Schema(str).validates('foo')
True
>>> Schema(str).validates('fnørd')
True
>>> Schema(list).validates([12, 'foo'])
True
>>> Schema(dict).validates({'foo': 12})
True
>>> class Foo(object):
... pass
>>> foo = Foo()
>>> Schema(object).validates([foo, (12, 43, 'strawberries'), {}])
True
Lists
Lists will validate list values all of whose elements are validated by at least one of the elements in the schema (order or number of elements do not matter, see Ordered()):
>>> Schema([str, int]).validates([12, 'foo', 'bar', 'baz', 42])
True
>>> schema = Schema(['foo', 'bar', 13])
>>> schema.validates(['foo'])
True
>>> schema.validates(['foo', 13])
True
>>> schema.validates(['bar', 'bar', 13, 'bar'])
True
Dictionaries
Dictionaries will validate dictionaries all of whose key value pairs are validated by at least one of the key value pairs in the schema:
>>> schema = Schema({'foo': int, str: int})
>>> schema.validates({'foo': 83})
True
>>> schema.validates({'foo': 12, 'bar': 888, 'baz': 299})
True
>>> schema.validates({'foo': 'bar'})
False
# >>> schema.validate({'foo': 'bar'})
# Traceback (most recent call last):
# ...
# val.NotValid: 'foo': 'bar' is not of type <... 'int'>
>>> schema.validates({'foo': 21, 12: 'bar'})
False
# >>> schema.validate({'foo': 21, 12: 'bar'})
# Traceback (most recent call last):
# ...
# val.NotValid: 12: 'bar' not matched
Callables
Callables (that aren’t of type type) will validate any value for which the callable returns a truthy value. TypeErrors or ValueErrors in the call will result in a NotValid exception:
>>> schema = Schema(lambda x: x < 10)
>>> schema.validates(9)
True
>>> schema.validates(10)
False
# >>> schema.validate(10)
# Traceback (most recent call last):
# ...
# val.NotValid: 10 not validated by '<lambda>'
To get nicer Exceptions, use functions rather than lambdas:
>>> def less_than_ten(n):
... """Must be less than 10."""
... return n < 10
>>> schema = Schema(less_than_ten)
>>> schema.validates(9)
True
>>> schema.validates(10)
False
# >>> schema.validate(10)
# Traceback (most recent call last):
# ...
# val.NotValid: 10 not validated by 'Must be less than 10.'
Convert()
Convert(callable) will call the callable on the value being validated, and substitute the result of that call for the original value in the validated structure. TypeErrors or ValueErrors in the call will result in a NotValid exception. This (or supplying a default value to an Optional key) is the only ways to modify the data being validated during the validation. Convert is useful to convert between representations (for instance from timestamps to datetime objects, or uuid string representations to uuid objects, etc.):
>>> from val import Convert
>>> schema = Schema(Convert(int))
>>> schema.validate('12')
12
>>> schema.validate(42.34)
42
>>> schema.validates('foo')
False
# >>> schema.validate('foo')
# Traceback (most recent call last):
# ...
# val.NotValid: invalid literal for int() with base 10: 'foo'
Or()
Or(element1, element2, ...) will validate a value validated by any of the elements passed into the Or:
>>> schema = Or('foo', int)
>>> schema.validates('foo')
True
>>> schema.validates(12)
True
>>> schema.validates('bar')
False
# >>> schema.validate('bar')
# Traceback (most recent call last):
# ...
# val.NotValid: 'bar' is not equal to 'foo', 'bar' is not of type <... 'int'>
And()
And(element1, element2, ...) will validate a value validated by all of the elements passed into the And:
>>> from val import And
>>> schema = And(Convert(int), lambda x: x < 12, lambda x: x >= 3)
>>> schema.validate('3')
3
>>> schema.validate(11.6)
11
>>> schema.validates('12')
False
# >>> schema.validate('12')
# Traceback (most recent call last):
# ...
# val.NotValid: 12 not validated by '<lambda>'
>>> schema.validates(42.77)
False
# >>> schema.validate(42.77)
# Traceback (most recent call last):
# ...
# val.NotValid: 42 not validated by '<lambda>'
>>> schema.validates('foo')
False
# >>> schema.validate('foo')
# Traceback (most recent call last):
# ...
# val.NotValid: invalid literal for int() with base 10: 'foo'
Optional()
{Optional(simple_literal_key): value} will match any key value pair that matches simple_literal_key: value but the schema will still validate dictionary values with no matching key.
Optional can take an optional default parameter, whose value will be substituted in the result if the key is not in the data, or, when a null_values parameter is also specified, if the key has a value that is one of the null values:
>>> schema = Schema({
... Optional('foo'): 12})
>>> schema.validates({'foo': 12})
True
>>> schema.validates({})
True
>>> schema.validates({'foo': 13})
False
# >>> schema.validate({'foo': 13})
# Traceback (most recent call last):
# ...
# val.NotValid: 'foo': 13 is not equal to 12
>>> schema.validates({'foo': 'bar'})
False
# >>> schema.validate({'foo': 'bar'})
# Traceback (most recent call last):
# ...
# NotValid: 'foo': 'bar' is not equal to 12
>>> schema = Schema({
... Optional('foo', default=13): int})
>>> schema.validate({'foo': 12})
{'foo': 12}
>>> schema.validate({})
{'foo': 13}
>>> schema.validates({'foo': 'bar'})
False
# >>> schema.validate({'foo': 'bar'})
# Traceback (most recent call last):
# ...
# NotValid: 'foo': 'bar' is not of type <... 'int'>
>>> schema = Schema({
... Optional('foo', default=13, null_values=(0, None)): Or(int, None)})
>>> schema.validate({'foo': 12})
{'foo': 12}
>>> schema.validate({'foo': 0})
{'foo': 13}
>>> schema.validate({'foo': None})
{'foo': 13}
Ordered()
Ordered([element1, element2, element3]) will validate a list with exactly 3 elements, each of which must be validated by the corresponding element in the schema. If order and number of elements do not matter, just use a list:
>>> from val import Ordered
>>> schema = Ordered([int, str, int, None])
>>> schema.validates([12, 'fnord', 42, None])
True
>>> schema.validates(['fnord', 42, None, 12])
False
# >>> schema.validate(['fnord', 42, None, 12])
# Traceback (most recent call last):
# ...
# NotValid: 'fnord' is not of type <... 'int'>
>>> schema.validates([12, 'fnord', 42, None, 12])
False
# >>> schema.validate([12, 'fnord', 42, None, 12])
# Traceback (most recent call last):
# ...
# NotValid: [12, 'fnord', 42, None, 12] does not have exactly 4 values. (Got 5.)
Parsed schemas
Other parsed schema objects. So this works:
>>> sub_schema = Schema({'foo': str, str: int})
>>> schema = Schema(
... {'key1': sub_schema,
... 'key2': sub_schema,
... str: sub_schema})
>>> schema.validates({
... 'key1': {'foo': 'bar'},
... 'key2': {'foo': 'qux', 'baz': 43},
... 'whatever': {'foo': 'doo', 'fsck': 22, 'tsk': 2992}})
True
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.