Skip to main content

Finding valeriepieris circles

Project description

valeriepieris

vpmap

Find valeriepieris circles. There are the smallest circles containing at least a fraction f of the data. See the paper for much more details on how this works and what you can do with a valeriepieris circle.

The code expects 2d-numpy arrays from e.g. SEDAC.

Basic use

import numpy as np
input_data = np.loadtxt("gpw_v4_population_count_rev11_2020_1_deg.asc", skiprows=6 )
input_data[ input_data < 0] = 0

Then call

from valeriepieris import valeriepieris
data_bounds = [ -90,90, -180,180 ] ##[lowest lat, highest lat, lowest lon, highest lon]
target_fracs = [0.25, 0.5, 1]
rmin, smin, best_latlon, data, new_bounds  = valeriepieris(input_data,  data_bounds, target_fracs)		

This computes the centre and radius for all the target fractions

for i,f in enumerate(target_fracs):
	print("At f={}, radius={}, population={}, centre={}".format( f, rmin[i], smin[i], best_latlon[i] ) )

gives

At f=0.25, radius=1880.446017450536, population=1997830287.9875035, centre=[(25.5, 88.5)]
At f=0.5, radius=3376.532684670633, population=3985134876.8947124, centre=[(28.5, 100.5)]
At f=1, radius=14979.863821630814, population=7969444594.980903, centre=[(75.5, -112.5)]

note that each centre is a list, usually of one element, but for very small f there can be multiple centres.

Focussing on a specific area

europe_bounds = [ 34.1,80, -25,34.9 ] 
target_fracs = [0.5]
rmin, smin, best_latlon, europe_data, europe_data_bounds  = valeriepieris(input_data,  data_bounds, 0.5, target_bounds=europe_bounds)		

for i,f in enumerate(target_fracs):
  print("At f={}, radius={}, population={}, centre={}".format( f, rmin[i], smin[i], best_latlon[i] ) )
print("data in ", europe_data_bounds, "has shape", europe_data.shape)
At f=0.5, radius=946.0320718882176, population=371822374.10794944, centre=[(49.5, 9.5)]
data in  [34.1, 80, -25, 34.9] has shape (47, 61)

If the target_bounds argument is given, only data within that area will be considered. The data that was used in the calculation and its boundary (snapped to the input grid) is returned.

Focussing the search

If you think you know where the centre is, or you want the smallest circle containing a fraction f of the data, centered within a certain area do the following

data_bounds = [ -90,90, -180,180 ] ##[lowest lat, highest lat, lowest lon, highest lon]
target_fracs = [0.5]
search_bounds = [ 24,50, -125, -66 ] #~continental US
rmin, smin, best_latlon, data, new_bounds  = valeriepieris(input_data,  data_bounds, target_fracs, search_bounds=search_bounds)		

for i,f in enumerate(target_fracs):
	print("At f={}, radius={}, population={}, centre={}".format( f, rmin[i], smin[i], best_latlon[i] ) )
At f=0.5, radius=10344.885492078058, population=3987443544.209256, centre=[(50.5, -66.5)]

Plotting the circles

Remember the earth is round, so don't just draw a circle on a flat map! See test.py for code to make the plot at the top

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

valeriepieris-0.1.14.tar.gz (267.4 kB view details)

Uploaded Source

Built Distribution

valeriepieris-0.1.14-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (901.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

File details

Details for the file valeriepieris-0.1.14.tar.gz.

File metadata

  • Download URL: valeriepieris-0.1.14.tar.gz
  • Upload date:
  • Size: 267.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for valeriepieris-0.1.14.tar.gz
Algorithm Hash digest
SHA256 e7e02752e140fbb2f97baaf90e69e6ddad3a05684295701bef665241821c09a8
MD5 59b5341e85c935d51ac5a6c091c4248d
BLAKE2b-256 a4bfe0658824184780ce20876e8c25cd4b214921300e6bf89e9f26c551a91f0a

See more details on using hashes here.

File details

Details for the file valeriepieris-0.1.14-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for valeriepieris-0.1.14-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ba6fe460bd1ba09cbd4752458f8899854db11de897e28a7f2640b4ee5202cf98
MD5 3506601757437a4673e1d49870e5bc49
BLAKE2b-256 9af6a5d86b8eadd9baaf9fef3829c46d3f5448085bfe4f5ed20fc23c1f9e24bf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page