Skip to main content

Finding valeriepieris circles

Project description

valeriepieris

vpmap

Find valeriepieris circles. There are the smallest circles containing at least a fraction f of the data. See the paper for much more details on how this works and what you can do with a valeriepieris circle.

The code expects 2d-numpy arrays from e.g. SEDAC.

Basic use

import numpy as np
input_data = np.loadtxt("gpw_v4_population_count_rev11_2020_1_deg.asc", skiprows=6 )
input_data[ input_data < 0] = 0

Then call

from valeriepieris import valeriepieris
data_bounds = [ -90,90, -180,180 ] ##[lowest lat, highest lat, lowest lon, highest lon]
target_fracs = [0.25, 0.5, 1]
rmin, smin, best_latlon, data, new_bounds  = valeriepieris(input_data,  data_bounds, target_fracs)		

This computes the centre and radius for all the target fractions

for i,f in enumerate(target_fracs):
	print("At f={}, radius={}, population={}, centre={}".format( f, rmin[i], smin[i], best_latlon[i] ) )

gives

At f=0.25, radius=1880.446017450536, population=1997830287.9875035, centre=[(25.5, 88.5)]
At f=0.5, radius=3376.532684670633, population=3985134876.8947124, centre=[(28.5, 100.5)]
At f=1, radius=14979.863821630814, population=7969444594.980903, centre=[(75.5, -112.5)]

note that each centre is a list, usually of one element, but for very small f there can be multiple centres.

Focussing on a specific area

europe_bounds = [ 34.1,80, -25,34.9 ] 
target_fracs = [0.5]
rmin, smin, best_latlon, europe_data, europe_data_bounds  = valeriepieris(input_data,  data_bounds, 0.5, target_bounds=europe_bounds)		

for i,f in enumerate(target_fracs):
  print("At f={}, radius={}, population={}, centre={}".format( f, rmin[i], smin[i], best_latlon[i] ) )
print("data in ", europe_data_bounds, "has shape", europe_data.shape)
At f=0.5, radius=946.0320718882176, population=371822374.10794944, centre=[(49.5, 9.5)]
data in  [34.1, 80, -25, 34.9] has shape (47, 61)

If the target_bounds argument is given, only data within that area will be considered. The data that was used in the calculation and its boundary (snapped to the input grid) is returned.

Focussing the search

If you think you know where the centre is, or you want the smallest circle containing a fraction f of the data, centered within a certain area do the following

data_bounds = [ -90,90, -180,180 ] ##[lowest lat, highest lat, lowest lon, highest lon]
target_fracs = [0.5]
search_bounds = [ 24,50, -125, -66 ] #~continental US
rmin, smin, best_latlon, data, new_bounds  = valeriepieris(input_data,  data_bounds, target_fracs, search_bounds=search_bounds)		

for i,f in enumerate(target_fracs):
	print("At f={}, radius={}, population={}, centre={}".format( f, rmin[i], smin[i], best_latlon[i] ) )
At f=0.5, radius=10344.885492078058, population=3987443544.209256, centre=[(50.5, -66.5)]

Plotting the circles

Remember the earth is round, so don't just draw a circle on a flat map! See test.py for code to make the plot at the top

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

valeriepieris-0.1.17.tar.gz (267.4 kB view details)

Uploaded Source

Built Distribution

valeriepieris-0.1.17-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (901.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

File details

Details for the file valeriepieris-0.1.17.tar.gz.

File metadata

  • Download URL: valeriepieris-0.1.17.tar.gz
  • Upload date:
  • Size: 267.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for valeriepieris-0.1.17.tar.gz
Algorithm Hash digest
SHA256 3674ae2eb3b457b85223444210b0fe66e0899974ee80370485e4760ca660b2cf
MD5 907773f34efbb4c0cab184e718721909
BLAKE2b-256 06166af85c017e50e38946da7f7b5e3a818e8e44906a46dc1ff902e34ad58cd5

See more details on using hashes here.

File details

Details for the file valeriepieris-0.1.17-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for valeriepieris-0.1.17-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 88810046a41f2c929b21b8b97e498b9a6fc160f80759de25c6123d09babf8d73
MD5 17312521fcc736ff6a241d28c9038c21
BLAKE2b-256 5a28417dead5015a8d0e648f785bd88ca48c8394d24495580dcf0b3eabe43035

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page