Safe, non-error-raising, alternative to Pydantic validate_call decorator
Project description
validate-call-safe
validate_call_safe
is a safe, non-error-raising alternative to Pydantic's validate_call
decorator.
It allows you to validate function arguments while gracefully handling validation errors through an error model,
inspired by effects handlers, returning them as structured data models instead of raising exceptions.
This therefore means that side effects ('erroring') are transformed into return types.
The return type annotation of a decorated function is modified accordingly as the Union
of the
existing return type with the provided error model type.
Features
- Validates function arguments using Pydantic's existing
validate_call
decorator - Returns a custom error model instead of raising exceptions when validation fails
- Configurable error information, including tracebacks
- Compatible with Pydantic v2, tested back to version 2.0.1
- Optional model config and return value validation, as in the original Pydantic
@validate_call
decorator - Option to validate function body execution (
validate_body
) - Option to specify additional exceptions to capture when validating body execution (
extra_exceptions
)
Installation
pip install validate-call-safe
Usage
Basic Usage
The simplest possible usage is as a direct alternative to @validate_call
:
from validate_call_safe import validate_call_safe
def foo(a: int) -> None:
return a
value = foo(a="bar") # ErrorModel(error_type='ValidationError', ...)
Instead of raising the ValidationError
, it's captured in a Pydantic model,
specifically an instance of ErrorModel
. Its fields are:
error_type
error_details
error_str
error_repr
error_tb
Decorator Forms
validate_call_safe
offers flexibility in specifying the error model:
-
No brackets:
@validate_call_safe def int_noop(a: int) -> int: return a
-
Empty brackets:
@validate_call_safe() def int_noop(a: int) -> int: return a
-
Custom error model:
@validate_call_safe(CustomErrorModel) def int_noop(a: int) -> int: return a
-
With validation parameters:
@validate_call_safe(validate_return=True) def int_noop(a: int) -> int: return a
-
With reporting parameters:
@validate_call_safe(report=True, reporter=logger.info) def int_noop(a: int) -> int: return a
Custom Error Models
To get more concise error model objects, you might want to override the default ErrorModel
class
with your own, and just include the fields you want.
For example:
from pydantic import BaseModel
from validate_call_safe import validate_call_safe, ErrorDetails
class MyErrorModel(BaseModel):
error_type: str
error_details: list[ErrorDetails]
@validate_call_safe(MyErrorModel)
def int_noop(a: int) -> int:
return a
success = int_noop(a=1) # 1
failure = int_noop(a="A") # MyErrorModel(error_type='ValidationError', ...)
Return Value Validation
You can enable return value validation using the validate_return
parameter,
which is passed along to the original Pydantic @validate_call
decorator flag of the same name:
@validate_call_safe(validate_return=True)
def botched_return(a: int) -> int:
return "foo" # This will cause a validation error
result = botched_return(a=1) # ErrorModel(error_type='ValidationError', ...)
Function Body Validation
To capture exceptions that occur within the function body, use the validate_body
parameter:
@validate_call_safe(validate_body=True)
def failing_function(name: str):
raise ValueError(f"Invalid name: {name}")
result = failing_function("John") # ErrorModel(error_type='ValueError', ...)
Validation reporting
Input kw/args and (when used with validate_return=True
) return value can be 'reported'
by passing report=True
and optionally a custom reporter
(default: print
)
@validate_call_safe(report=True)
def int_noop(a: int) -> int:
return a
result = int_noop(1) # prints "int_noop_in_out_validated -> int: 1"
Capturing Additional Exceptions
You can specify additional exceptions to capture using the extra_exceptions
parameter:
@validate_call_safe(validate_body=True, extra_exceptions=(NameError, TypeError))
def risky_function(a: int):
if a == 1:
raise NameError("Name not found")
elif a == 2:
raise TypeError("Type mismatch")
return a
result1 = risky_function(1) # ErrorModel(error_type='NameError', ...)
result2 = risky_function(2) # ErrorModel(error_type='TypeError', ...)
result3 = risky_function(3) # 3
The extra_exception
default is Exception
(enough for most user-level exceptions,
but will not stop sys.exit
calls for which you'd need to capture BaseException
).
Specifying it is useful to narrow the handled exception types, as is good practice
with regular try
/except
exception handling.
Comparison with validate_call
With validate_call_safe
you don't have to catch the expected ValidationError
from Pydantic's validate_call
:
from pydantic import validate_call
@validate_call
def unsafe_int_noop(a: int) -> int:
return a
try:
unsafe_int_noop(a="A")
except ValidationError as e:
print(f"Error: {e}")
else:
... # Regular business logic here
Using validate_call_safe
:
from validate_call_safe import validate_call_safe, ErrorModel
@validate_call_safe:
def safe_int_noop(a: int) -> int:
return a
result = safe_int_noop(a="A")
match result:
case ErrorModel():
print(f"Error: {result.error_repr}")
case int():
... # Regular business logic here
- These both do the same thing and have the same number of lines
- In the safe form, you get structured error objects to work with (including tracebacks)
- You can trivially extend the safety level to more exception types with
validate_body
- The side effects of the safe form may be easier to reason about for you (I think they are)
Extensions/ideas
- Multiple model types for different error types with tagged union on the
error_type
field name?
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file validate_call_safe-0.3.4.tar.gz
.
File metadata
- Download URL: validate_call_safe-0.3.4.tar.gz
- Upload date:
- Size: 7.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: pdm/2.18.1 CPython/3.10.14 Linux/5.15.0-117-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ae0d87d04cb428245ada1da49b157dc0feb4a87930ef1e83082dfb0a3ad596bd |
|
MD5 | cd0c40b7c1e13566427dad17490f1d11 |
|
BLAKE2b-256 | d1da1474b8c0c70fe305fc29702c5aec28827e093faebdbbc7357ef50125b2f9 |
File details
Details for the file validate_call_safe-0.3.4-py3-none-any.whl
.
File metadata
- Download URL: validate_call_safe-0.3.4-py3-none-any.whl
- Upload date:
- Size: 6.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: pdm/2.18.1 CPython/3.10.14 Linux/5.15.0-117-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 71a4e8e84e86c6e79b31893113dd9ac67788e7f8c2192bd3c1b09ce461cfdf61 |
|
MD5 | 02b679a20c76d370d59239c82073438a |
|
BLAKE2b-256 | f532d7507f16cfc3d3dec13abcf9e225930a3aa1c659c05f5f1fe144a8da132a |