Skip to main content

Ultimate data validation tool built on top of the typing module

Project description

Validate-it

Build Status Coverage Status PyPI version Downloads

About

Ultimate data validation tool built on top of the typing module

Features:

  • validation by type hints
  • validation on __init__: SomeModel(**kwargs)
  • validation on __setattr__: some_instance.some_field = value
  • built-in options for types:
    • min_value, max_value (based on < and >)
    • min_length, max_length, size (based on len())
  • cast for incoming value and outgoing value: Options(parser=int, serializer=str)
  • alias for incoming keys and rename for outgoing keys: d: int = Options(alias='dyn', rename='dynamic')
  • validation by list allowed values: Options(allow=[1, 2, 3])
  • validation by custom list of validators: Options(validators=[is_odd, is_even])
  • auto pack nested values: data: List[SomeModel] = Options(auto_pack=True, packer=SomeModel)
  • all this options can be callable: Options(min_value=dynamic_min_value)

Installation

With pip:

pip install validate-it

Supported fields

import re
from datetime import datetime
from typing import Dict, List, Union, Optional
from validate_it import schema, Options


class IsNotEmailError(Exception):
    pass


def is_email(name, key, value, root):
    if not re.match(r"[^@]+@[^@]+\.[^@]+", value):
        raise IsNotEmailError(f"{key}: is not email")

    return value

@schema
class Example:
    # required fields
    field_a: datetime
    field_b: float
    
    # required fields with defaults
    field_c: str = "unknown"
    field_d: int = 9
    
    # required fields with nested types
    field_e: Dict[int, str]
    field_f: List[int]
    
    # optional fields
    field_g: Optional[int]
    field_h: Union[int, None] # equivalent of Optional[int]
    
    # with some validators:
    fields_i: int = Options(default=0, max_value=100, min_value=100)
    fields_j: str = Options(size=10)
    fields_k: str = Options(min_length=10, max_length=20)
    fields_l: List[str] = Options(size=5)
    fields_m: str = Options(validators=[is_email])
    fields_n: int = Options(allowed=[1, 2, 3])
    
    # with search (input) alias:
    fields_o: int = Options(alias="field_n")
    
    # with rename (output) alias:
    fields_p: int = Options(rename="field_q")
    
    # with serializer used in #to_dict(), outgoing value is str type
    fields_q: int = Options(serializer=str)
    
    # with parser used in #from_dict() or direct setattr, incoming value will be parsed as int
    fields_r: int = Options(parser=int)

Validation example

from typing import List
from validate_it import *


@schema
class Simple:
    a: int
    b: int


simple = Simple(a=1, b=2)
simple.a = 2
simple.b = 3

try:
    simple.a = 'not int'
except TypeError:
    print("Wrong type")

@schema
class Owner:
    first_name: str
    last_name: str


@schema
class Characteristics:
    cc: float = Options(min_value=0.0)
    hp: int = Options(min_value=0)


@schema
class Car:
    name: str = Options(min_length=2, max_length=20)
    owners: List[Owner] = Options(auto_pack=True, packer=pack_value)
    characteristics: Characteristics = Options(default=lambda: {"cc": 0.0, "hp": 0}, auto_pack=True, packer=pack_value)
    convert: bool = Options(parser=bool)


_data = {
    "name": "Shelby GT500",
    "owners": [
        {
            "first_name": "Randall",
            "last_name": "Raines",
        }
    ],
    "characteristics": {
        "cc": 4.7,
        "hp": 306
    },
    "unknown_field": 10,
    "convert": 1 
}

_expected = {
    "name": "Shelby GT500",
    "owners": [
        {
            "first_name": "Randall",
            "last_name": "Raines",
        }
    ],
    "characteristics": {
        "cc": 4.7,
        "hp": 306
    },
    "convert": "1"
}

car = Car(**_data)
assert to_dict(car) == _expected

Dataclass example

from validate_it import *
from dataclasses import dataclass


@schema
@dataclass
class Simple:
    a: int
    b: int


simple = Simple(a=1, b=2)
simple.a = 2
simple.b = 3

try:
    simple.a = 'not int'
except TypeError:
    print("Wrong type")

Simple mapping example

from validate_it import *


@schema
class User:
    first_name: str = Options(alias="f")
    last_name: str = Options(alias="l")

_in_data = {
    "f": "John",
    "l": "Connor"
}

user = User(**_in_data)

assert to_dict(user) == {"first_name": "John", "last_name": "Connor"}

Nested mapping example

from validate_it import *
from accordion import compress


@schema
class Player:
    nickname: str = Options(alias="info.nickname")
    intelligence: int = Options(alias="characteristics/0")
    dexterity: int = Options(alias="characteristics/1")
    strength: int = Options(alias="characteristics/2")
    vitality: int = Options(alias="characteristics/3")

_in_data = {
    "info": {
        "nickname": "Killer777",
    },
    "characteristics": [
        7,
        55,
        11,
        44
    ]
}

player = Player(**compress(_in_data))

assert to_dict(player) == {
    "nickname": "Killer777", 
    "intelligence": 7, 
    "dexterity": 55, 
    "strength": 11, 
    "vitality": 44
}

and back:

from validate_it import *
from accordion import expand


@schema
class Player:
    nickname: str = Options(rename="info.nickname")
    intelligence: int = Options(rename="characteristics/0")
    dexterity: int = Options(rename="characteristics/1")
    strength: int = Options(rename="characteristics/2")
    vitality: int = Options(rename="characteristics/3")

_in_data = {
    "nickname": "Killer777", 
    "intelligence": 7, 
    "dexterity": 55, 
    "strength": 11, 
    "vitality": 44
}

player = Player(**_in_data)

assert expand(to_dict(player)) == {
    "info": {
        "nickname": "Killer777",
    },
    "characteristics": [
        7,
        55,
        11,
        44
    ]
}

Requirements

Tested with python3.6, python3.7, pypy3.6-7.0.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

validate-it-0.11.2.tar.gz (11.1 kB view details)

Uploaded Source

Built Distribution

validate_it-0.11.2-py3-none-any.whl (9.4 kB view details)

Uploaded Python 3

File details

Details for the file validate-it-0.11.2.tar.gz.

File metadata

  • Download URL: validate-it-0.11.2.tar.gz
  • Upload date:
  • Size: 11.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.3 CPython/3.8.6 Darwin/18.7.0

File hashes

Hashes for validate-it-0.11.2.tar.gz
Algorithm Hash digest
SHA256 255cff5298d0526c4d782a31452265ff3a760efbe38ac595a46892c9efec53d6
MD5 a3fc341099a795bb504dc788ad45ad63
BLAKE2b-256 945bce68a0274e9bd2b5d733c5c4df367e964cd9f9a08a8451c1a2949449fd8d

See more details on using hashes here.

File details

Details for the file validate_it-0.11.2-py3-none-any.whl.

File metadata

  • Download URL: validate_it-0.11.2-py3-none-any.whl
  • Upload date:
  • Size: 9.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.3 CPython/3.8.6 Darwin/18.7.0

File hashes

Hashes for validate_it-0.11.2-py3-none-any.whl
Algorithm Hash digest
SHA256 af41438ba432ec270f479bcdacc57ad762eef39c294d8b1785edf4ee1d23e23b
MD5 d674cfb489b1451e3d74c69916b1c65e
BLAKE2b-256 6d66c454b90c450c5d8311e8323f843b5ca5a7ca8f670d089e83b12e9c1d0096

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page