Skip to main content

Validobj gives you valid objects

Project description

Tests Coverage PyPI Conda Version RTD

Validobj

Validobj is library that takes semistructured data (for example JSON and YAML configuration files) and converts it to more structured Python objects. It places the emphasis on:

  • Good error messages (rather than avoiding extra work in the error handling code).
  • Schema defined in terms of dataclasses and other high level objects such as enums, as well as a subset of the typing module.
  • Simplicity of implementation (rather than full generality).

Validobj requires a modern Python version and has no other dependencies. It progressively supports typing features as they are implemented in the standard library and language: A limited subset of the parsing facilities work with Python 3.8, which is the minimum version. The custom validation module requires at least Python 3.9.

Documentation

https://validobj.readthedocs.io/en/latest/

Example

  1. Define a schema using dataclasses
    import dataclasses
    import enum
    from typing import Mapping, Set, Tuple, List
    
    
    class DiskPermissions(enum.Flag):
        READ = enum.auto()
        WRITE = enum.auto()
        EXECUTE = enum.auto()
    
    
    class OS(enum.Enum):
        mac = enum.auto()
        windows = enum.auto()
        linux = enum.auto()
    
    
    @dataclasses.dataclass
    class Job:
        name: str
        os: Set[OS]
        script_path: str
        framework_version: Tuple[int, int] = (1, 0)
        disk_permissions: DiskPermissions = DiskPermissions.READ
    
    
    @dataclasses.dataclass
    class CIConf:
        stages: List[Job]
        global_environment: Mapping[str, str] = dataclasses.field(default_factory=dict)
    
  2. Process a dictionary input into it using Validobj
    from validobj import parse_input
    
    inp = {
        'global_environment': {'CI_ACTIVE': '1'},
        'stages': [
            {
                'name': 'compile',
                'os': ['linux', 'mac'],
                'script_path': 'build.sh',
                'disk_permissions': ['READ', 'WRITE', 'EXECUTE'],
            },
            {
                'name': 'test',
                'os': ['linux', 'mac'],
                'script_path': 'test.sh',
                'framework_version': [4, 0],
            },
        ],
    }
    print(parse_input(inp, CIConf))
    # This results in a dataclass instance with the correct types:
    #
    #CIConf(
    #    stages=[
    #        Job(
    #            name='compile',
    #            os={<OS.linux: 3>, <OS.mac:1>},
    #            script_path='build.sh',
    #            framework_version=(1, 0),
    #            disk_permissions=<DiskPermissions.EXECUTE|WRITE|READ: 7>,
    #        ),
    #        Job(
    #            name='test',
    #            os={<OS.linux: 3>, <OS.mac: 1>},
    #            script_path='test.sh',
    #            framework_version=(4, 0),
    #            disk_permissions='<DiskPermissions.READ: 1>',
    #        ),
    #    ],
    #    global_environment={'CI_ACTIVE': '1'},
    #)
    #
    

The set of applied transformations as well as the interface to customise processing are described in the documentation

Installation

The package can be installed with pip:

python3 -m pip install validobj

As well as with conda, from the conda-forge channel:

conda install validobj -c conda-forge

The code is hosted at

https://github.com/Zaharid/validobj

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

validobj-1.2.tar.gz (26.3 kB view details)

Uploaded Source

Built Distribution

validobj-1.2-py3-none-any.whl (15.4 kB view details)

Uploaded Python 3

File details

Details for the file validobj-1.2.tar.gz.

File metadata

  • Download URL: validobj-1.2.tar.gz
  • Upload date:
  • Size: 26.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.31.0

File hashes

Hashes for validobj-1.2.tar.gz
Algorithm Hash digest
SHA256 bb03f632ed740220d6ce53cc447dbed023129e26d307c28163c41935ffa270d0
MD5 fb69e32a2598ad7a0b508994b2ededcd
BLAKE2b-256 7a7ea36e392b9cf4c19ed63a12cf6749730e3a996fb496fa1f3ccf061c9c26e9

See more details on using hashes here.

File details

Details for the file validobj-1.2-py3-none-any.whl.

File metadata

  • Download URL: validobj-1.2-py3-none-any.whl
  • Upload date:
  • Size: 15.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.31.0

File hashes

Hashes for validobj-1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 a674ff4ae20476ff6839dc55d4d71a229a7588a639bbebdfba2cf944fad4b352
MD5 7507a8361e474b3430ee9b8c0a0da46a
BLAKE2b-256 54c1dac81ab263b1ea12ec1af708eeee43f9d2073616a02336bcf5e11ce2cada

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page