Skip to main content

Validobj gives you valid objects

Project description

Tests Coverage PyPI Conda Version RTD

Validobj

Validobj is library that takes semistructured data (for example JSON and YAML configuration files) and converts it to more structured Python objects. It places the emphasis on:

  • Good error messages (rather than avoiding extra work in the error handling code).
  • Schema defined in terms of dataclasses and other high level objects such as enums, as well as a subset of the typing module.
  • Simplicity of implementation (rather than full generality).

Validobj requires Python 3.7 and has no other dependencies.

Documentation

https://validobj.readthedocs.io/en/latest/

Example

  1. Define a schema using dataclasses
    import dataclasses
    import enum
    from typing import Mapping, Set, Tuple, List
    
    
    
    class DiskPermissions(enum.Flag):
    	READ = enum.auto()
    	WRITE = enum.auto()
    	EXECUTE = enum.auto()
    
    
    class OS(enum.Enum):
    	mac = enum.auto()
    	windows = enum.auto()
    	linux = enum.auto()
    
    
    @dataclasses.dataclass
    class Job:
    	name: str
    	os: Set[OS]
    	script_path: str
    	framework_version: Tuple[int, int] = (1, 0)
    	disk_permissions: DiskPermissions = DiskPermissions.READ
    
    
    @dataclasses.dataclass
    class CIConf:
    	stages: List[Job]
    	global_environment: Mapping[str, str] = dataclasses.field(default_factory=dict)
    
  2. Process a dictionary input into it using Validobj
    from validobj import parse_input
    
    inp = {
    	'global_environment': {'CI_ACTIVE': '1'},
    	'stages': [
    		{
    			'name': 'compile',
    			'os': ['linux', 'mac'],
    			'script_path': 'build.sh',
    			'disk_permissions': ['READ', 'WRITE', 'EXECUTE'],
    		},
    		{
    			'name': 'test',
    			'os': ['linux', 'mac'],
    			'script_path': 'test.sh',
    			'framework_version': [4, 0],
    		},
    	],
    }
    print(parse_input(inp, CIConf))
    # This results in a dataclass instance with the correct types:
    #
    #CIConf(
    #    stages=[
    #        Job(
    #            name='compile',
    #            os={<OS.linux: 3>, <OS.mac:1>},
    #            script_path='build.sh',
    #            framework_version=(1, 0),
    #            disk_permissions=<DiskPermissions.EXECUTE|WRITE|READ: 7>,
    #        ),
    #        Job(
    #            name='test',
    #            os={<OS.linux: 3>, <OS.mac: 1>},
    #            script_path='test.sh',
    #            framework_version=(4, 0),
    #            disk_permissions='<DiskPermissions.READ: 1>',
    #        ),
    #    ],
    #    global_environment={'CI_ACTIVE': '1'},
    #)
    #
    

The set of applied transformations is described in the documentation

Installation

The package can be installed with pip:

python3 -m pip install validobj

As well as with conda, from the conda-forge channel:

conda install validobj -c conda-forge

The code is hosted at

https://github.com/Zaharid/validobj

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

validobj-0.4.1.tar.gz (20.7 kB view details)

Uploaded Source

Built Distribution

validobj-0.4.1-py2.py3-none-any.whl (11.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file validobj-0.4.1.tar.gz.

File metadata

  • Download URL: validobj-0.4.1.tar.gz
  • Upload date:
  • Size: 20.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.27.1

File hashes

Hashes for validobj-0.4.1.tar.gz
Algorithm Hash digest
SHA256 4a2a06c6892df795db55b30f92e1320c94e563b390f31ba72f631b25606215b6
MD5 fa6c69a7df98430d097ac9e50ff282f5
BLAKE2b-256 bb5d13f763a8e523fcb9378b34392d9561c193c233bf4c97033a1c6b10ec7ec0

See more details on using hashes here.

File details

Details for the file validobj-0.4.1-py2.py3-none-any.whl.

File metadata

  • Download URL: validobj-0.4.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 11.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.27.1

File hashes

Hashes for validobj-0.4.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 af8f5c5ab96f92030501853ebdebcb52cfb9966cdbed57891cb19786accba103
MD5 cd6fa5f206bd1ee6c3df0a9f5aa5563c
BLAKE2b-256 fecdf2d47aa30569e010a8a639a3d4ee87d04af90e239399805f3fb88a0562d2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page