Skip to main content

Validobj gives you valid objects

Project description

Tests Coverage PyPI Conda Version RTD

Validobj

Validobj is library that takes semistructured data (for example JSON and YAML configuration files) and converts it to more structured Python objects. It places the emphasis on:

  • Good error messages (rather than avoiding extra work in the error handling code).
  • Schema defined in terms of dataclasses and other high level objects such as enums, as well as a subset of the typing module.
  • Simplicity of implementation (rather than full generality).

Validobj requires Python 3.7 and has no other dependencies.

Documentation

https://validobj.readthedocs.io/en/latest/

Example

  1. Define a schema using dataclasses
    import dataclasses
    import enum
    from typing import Mapping, Set, Tuple, List
    
    
    class DiskPermissions(enum.Flag):
        READ = enum.auto()
        WRITE = enum.auto()
        EXECUTE = enum.auto()
    
    
    class OS(enum.Enum):
        mac = enum.auto()
        windows = enum.auto()
        linux = enum.auto()
    
    
    @dataclasses.dataclass
    class Job:
        name: str
        os: Set[OS]
        script_path: str
        framework_version: Tuple[int, int] = (1, 0)
        disk_permissions: DiskPermissions = DiskPermissions.READ
    
    
    @dataclasses.dataclass
    class CIConf:
        stages: List[Job]
        global_environment: Mapping[str, str] = dataclasses.field(default_factory=dict)
    
  2. Process a dictionary input into it using Validobj
    from validobj import parse_input
    
    inp = {
        'global_environment': {'CI_ACTIVE': '1'},
        'stages': [
            {
                'name': 'compile',
                'os': ['linux', 'mac'],
                'script_path': 'build.sh',
                'disk_permissions': ['READ', 'WRITE', 'EXECUTE'],
            },
            {
                'name': 'test',
                'os': ['linux', 'mac'],
                'script_path': 'test.sh',
                'framework_version': [4, 0],
            },
        ],
    }
    print(parse_input(inp, CIConf))
    # This results in a dataclass instance with the correct types:
    #
    #CIConf(
    #    stages=[
    #        Job(
    #            name='compile',
    #            os={<OS.linux: 3>, <OS.mac:1>},
    #            script_path='build.sh',
    #            framework_version=(1, 0),
    #            disk_permissions=<DiskPermissions.EXECUTE|WRITE|READ: 7>,
    #        ),
    #        Job(
    #            name='test',
    #            os={<OS.linux: 3>, <OS.mac: 1>},
    #            script_path='test.sh',
    #            framework_version=(4, 0),
    #            disk_permissions='<DiskPermissions.READ: 1>',
    #        ),
    #    ],
    #    global_environment={'CI_ACTIVE': '1'},
    #)
    #
    

The set of applied transformations is described in the documentation

Installation

The package can be installed with pip:

python3 -m pip install validobj

As well as with conda, from the conda-forge channel:

conda install validobj -c conda-forge

The code is hosted at

https://github.com/Zaharid/validobj

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

validobj-0.4.3.tar.gz (21.1 kB view details)

Uploaded Source

Built Distribution

validobj-0.4.3-py2.py3-none-any.whl (11.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file validobj-0.4.3.tar.gz.

File metadata

  • Download URL: validobj-0.4.3.tar.gz
  • Upload date:
  • Size: 21.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.27.1

File hashes

Hashes for validobj-0.4.3.tar.gz
Algorithm Hash digest
SHA256 fbf8ef2d84b55623b90d9961e1a779a6675f4d70ef483e0eb3ce272a95257df5
MD5 cb787caba94cfc2c57895ffa67c05937
BLAKE2b-256 9cc32fd34e094769fd4cd11930c45492a8275f58581dd80df0c83e27698b2af2

See more details on using hashes here.

File details

Details for the file validobj-0.4.3-py2.py3-none-any.whl.

File metadata

  • Download URL: validobj-0.4.3-py2.py3-none-any.whl
  • Upload date:
  • Size: 11.5 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.27.1

File hashes

Hashes for validobj-0.4.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 b368fd959b4bc4d93d30db9c9911988189888ca33c2ead205f2728ee4c793399
MD5 200ff1d941a4103ee279a64507163aae
BLAKE2b-256 cf5d5342d5ef96da2ceaf34826f5b5dcac3f996af33b2b1a94759e498dd81ae2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page