Skip to main content

Validobj gives you valid objects

Project description

Tests Coverage PyPI Conda Version RTD

Validobj

Validobj is library that takes semistructured data (for example JSON and YAML configuration files) and converts it to more structured Python objects. It places the emphasis on:

  • Good error messages (rather than avoiding extra work in the error handling code).
  • Schema defined in terms of dataclasses and other high level objects such as enums, as well as a subset of the typing module.
  • Simplicity of implementation (rather than full generality).

Validobj requires a moder Python version and has no other dependencies. It progressively supports typing features as they are implemented in the standard library and language: A limited subset of the parsing facilities work with Python 3.8, which is the minimum version. The custom validation module requires at least Python 3.9.

Documentation

https://validobj.readthedocs.io/en/latest/

Example

  1. Define a schema using dataclasses
    import dataclasses
    import enum
    from typing import Mapping, Set, Tuple, List
    
    
    class DiskPermissions(enum.Flag):
        READ = enum.auto()
        WRITE = enum.auto()
        EXECUTE = enum.auto()
    
    
    class OS(enum.Enum):
        mac = enum.auto()
        windows = enum.auto()
        linux = enum.auto()
    
    
    @dataclasses.dataclass
    class Job:
        name: str
        os: Set[OS]
        script_path: str
        framework_version: Tuple[int, int] = (1, 0)
        disk_permissions: DiskPermissions = DiskPermissions.READ
    
    
    @dataclasses.dataclass
    class CIConf:
        stages: List[Job]
        global_environment: Mapping[str, str] = dataclasses.field(default_factory=dict)
    
  2. Process a dictionary input into it using Validobj
    from validobj import parse_input
    
    inp = {
        'global_environment': {'CI_ACTIVE': '1'},
        'stages': [
            {
                'name': 'compile',
                'os': ['linux', 'mac'],
                'script_path': 'build.sh',
                'disk_permissions': ['READ', 'WRITE', 'EXECUTE'],
            },
            {
                'name': 'test',
                'os': ['linux', 'mac'],
                'script_path': 'test.sh',
                'framework_version': [4, 0],
            },
        ],
    }
    print(parse_input(inp, CIConf))
    # This results in a dataclass instance with the correct types:
    #
    #CIConf(
    #    stages=[
    #        Job(
    #            name='compile',
    #            os={<OS.linux: 3>, <OS.mac:1>},
    #            script_path='build.sh',
    #            framework_version=(1, 0),
    #            disk_permissions=<DiskPermissions.EXECUTE|WRITE|READ: 7>,
    #        ),
    #        Job(
    #            name='test',
    #            os={<OS.linux: 3>, <OS.mac: 1>},
    #            script_path='test.sh',
    #            framework_version=(4, 0),
    #            disk_permissions='<DiskPermissions.READ: 1>',
    #        ),
    #    ],
    #    global_environment={'CI_ACTIVE': '1'},
    #)
    #
    

The set of applied transformations as well as the interface to customise processing are described in the documentation

Installation

The package can be installed with pip:

python3 -m pip install validobj

As well as with conda, from the conda-forge channel:

conda install validobj -c conda-forge

The code is hosted at

https://github.com/Zaharid/validobj

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

validobj-0.6.tar.gz (25.0 kB view details)

Uploaded Source

Built Distribution

validobj-0.6-py3-none-any.whl (14.0 kB view details)

Uploaded Python 3

File details

Details for the file validobj-0.6.tar.gz.

File metadata

  • Download URL: validobj-0.6.tar.gz
  • Upload date:
  • Size: 25.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.28.1

File hashes

Hashes for validobj-0.6.tar.gz
Algorithm Hash digest
SHA256 06f9c79f412b93cec27b7b58c187f4b41c1124cac6d7d01ffd8e7af15274daea
MD5 909b312bcebf6513971eb3a575d367f3
BLAKE2b-256 59b5a6c591197b8752a2c69b8927ae3e5d8eae6f601a4403dd75f42ed847ebd7

See more details on using hashes here.

File details

Details for the file validobj-0.6-py3-none-any.whl.

File metadata

  • Download URL: validobj-0.6-py3-none-any.whl
  • Upload date:
  • Size: 14.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.28.1

File hashes

Hashes for validobj-0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 a07c3092edcc32e5c54aa461f0a0c2ced52d98f3a463fbb25771aa82559139ff
MD5 ed2cbb1f2ce7a75b5d1ce36337d432a3
BLAKE2b-256 d3a633462f754bfd9208ad8cad2b23bb6453e0ca2ff2e88e300bc376707bb342

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page