Skip to main content

Python extensible schema validations and declarative syntax helpers.

Project description

alt text

Valley

Python extensible schema validations and declarative syntax helpers.

Unittests

Installation

pip install valley

Getting Started

class Animal(Schema):
    name = CharProperty(required=True)
    species = CharProperty(required=True)
    color = CharProperty(required=True)
    meal_type = CharProperty()
    age = IntegerProperty(required=True)
    
frog = Animal(name='Kermit',species='frog',color='green',meal='carnivore',age=1)
frog.validate()

Python Versions

Python 3.6+

Projects Using Valley

  • kev - K.E.V. (Keys, Extra Stuff, and Values) is a Python ORM for key-value stores. Currently supported backends are Redis, S3, DynamoDB, and a S3/Redis hybrid backend.
  • formy - Formy is a Python forms library with Jinja2 templates

Schema and Declarative Syntax Helpers

The schema class (valley.contrib.Schema) provides the model for validating properties. Valley also includes utilities (valley.declarative) to make building declarative syntax validation libraries easier. See an example below.

from six import with_metaclass

from valley.declarative import DeclaredVars as DV, \
    DeclarativeVariablesMetaclass as DVM
from valley.schema import BaseSchema
from valley.properties import *


class DeclaredVars(DV):
    base_field_class = BaseProperty
    base_field_type = '_base_properties'


class DeclarativeVariablesMetaclass(DVM):
    declared_vars_class = DeclaredVars


class Schema(with_metaclass(DeclarativeVariablesMetaclass, BaseSchema)):
    _create_error_dict = False
    BUILTIN_DOC_ATTRS = []
    
#If you just want to build upon an existing schema use valley.contrib.Schema

class Animal(Schema):
    name = CharProperty(required=True)
    species = CharProperty(required=True)
    color = CharProperty(required=True)
    meal_type = CharProperty()
    age = IntegerProperty(required=True)
>>bear = Animal(name="Yogi",species="bear",color="brown",meal_type="carnivore",age=5)
>>bear.is_valid
False
>>bear.validate()
>>bear.is_valid
True
>>frog = Animal(name="Kermit",species="frog",color="green",meal_type="carnivore")
>>frog.is_valid
False
>>frog.validate()

ValidationException                       Traceback (most recent call last)

      1 frog = Animal(name='Frog',color='Green',meal_type='carnivore')
      2 
      3 frog.validate()

/home/coder/workspace/valley/valley/schema.pyc in validate(self)
     55                     self._errors[key] = e.error_msg
     56                 else:
     57                     raise e
     58             value = prop.get_python_value(data.get(key))
     59             data[key] = value

ValidationException: age: This value is required

Properties

BaseProperty

Base class that all of the following properties are subclassed from.

Default Validators
  • RequiredValidator (if the required kwarg is set)

CharProperty

Validates that the input is a string type.

Example
from valley.properties import CharProperty

first_name = CharProperty(required=True,min_length=1,max_length=20)
first_name.validate('Some string','First Name')
Default Validators
  • Validators from BaseProperty
  • StringValidator
  • MinLengthValidator (if min_length kwarg is set)
  • MaxLengthValidator (if max_length kwarg is set)

SlugProperty

Validates that the input is a string type but is also a slug (ex. this-is-a-slug).

Example
from valley.properties import SlugProperty

slug = SlugProperty(required=True,min_length=1,max_length=20)
slug.validate('some-slug','Slug')
Default Validators
  • Validators from BaseProperty
  • StringValidator
  • MinLengthValidator (if min_length kwarg is set)
  • MaxLengthValidator (if max_length kwarg is set)
  • SlugValidator

EmailProperty

Validates that the input is a string type but is also in valid email format.

Example
from valley.properties import EmailProperty

email = EmailProperty(required=True,min_length=1,max_length=20)
email.validate('you@you.com','Email')
Default Validators
  • Validators from BaseProperty
  • StringValidator
  • MinLengthValidator (if min_length kwarg is set)
  • MaxLengthValidator (if max_length kwarg is set)
  • EmailValidator

IntegerProperty

Validates that the input is a integer type.

Example
from valley.properties import IntegerProperty

age = IntegerProperty(required=True,min_value=1,max_value=20)
age.validate(5,'Age')
Default Validators
  • Validators from BaseProperty
  • IntegerValidator
  • MinValuehValidator (if min_value kwarg is set)
  • MaxLengthValidator (if max_value kwarg is set)

FloatProperty

Validates that the input is a float type.

Example
from valley.properties import FloatProperty

gpa = FloatProperty(required=True,min_value=1,max_value=20)
gpa.validate(4.0,'GPA')
Default Validators
  • Validators from BaseProperty
  • FloatValidator
  • MinValuehValidator (if min_value kwarg is set)
  • MaxLengthValidator (if max_value kwarg is set)

BooleanProperty

Validataes that the input is a bool type.

Example
from valley.properties import BooleanProperty

active = BooleanProperty()
active.validate(True,'Active')
Default Validators
  • Validators from BaseProperty
  • BooleanValidator

DateProperty

Validates that the input is a date object or a string that can be transformed to a date object.

Example
from valley.properties import DateProperty

active = DateProperty(required=True)
active.validate('2017-03-27','Active')
Default Validators
  • Validators from BaseProperty
  • DateValidator

DateTimeProperty

Validates that the input is a datetime object or a string that can be transformed to a datetime object.

Example
from valley.properties import DateTimeProperty

active = DateTimeProperty(required=True)
active.validate('2017-03-03 12:00:00','Active')
Default Validators
  • Validators from BaseProperty
  • DateTimeValidator

DictProperty

Validates that the input is a dict object.

Example
from valley.properties import DictProperty

person = DictProperty(required=True)
person.validate({'first':'Eddie','last':'Murphy'},'First Name')
Default Validators
  • Validators from BaseProperty
  • DictValidator

ListProperty

Validates that the input is a list object.

Example
from valley.properties import ListProperty

schools = ListProperty(required=True)
schools.validate(['Jones School','Edwards School'],'Schools')
Default Validators
  • Validators from BaseProperty
  • ListValidator

ForeignProperty

Validates that the input is an instance of another class

Example
from valley.properties import ForeignProperty

district = ForeignProperty(District,required=True)
district.validate(District(name='Durham'),'District')
Default Validators
  • Validators from BaseProperty
  • ForeignValidator

ForeignListProperty

Validates that the input is an instance of another class

Example
from valley.properties import ForeignListProperty

great_schools = ForeignListProperty(School,required=True)
great_schools.validate([School(name='Duke'),School(name='Hampton University')],'Great Schools')
#Go Duke
terrible_schools = ForeignListProperty(School,required=True)
terrible_schools.validate([School(name='UNC'),School(name='Howard')],'Terrible Schools')
Default Validators
  • Validators from BaseProperty
  • ListValidator
  • ForeignListValidator

JSON Encoders and Decoder

ValleyEncoder

Paired with the json.dumps it parses through Schema objects and returns valid json.

Example
import json
from valley.utils.json_utils import ValleyEncoder
from valley.contrib import Schema
from valley.properties import *

class NameSchema(Schema):
    _create_error_dict = True
    name = CharProperty(required=True)

    def __unicode__(self):
        return self.name


class Breed(NameSchema):
    pass


class Dog(NameSchema):
    breed = ForeignProperty(Breed,required=True)


class Troop(NameSchema):
    dogs = ForeignListProperty(Dog)
    primary_breed = ForeignProperty(Breed)


>>> cocker = Breed(name='Cocker Spaniel')

>>> cockapoo = Breed(name='Cockapoo')

>>> bruno = Dog(name='Bruno',breed=cocker)

>>> blitz = Dog(name='Blitz',breed=cockapoo)

>>> durham = Troop(name='Durham',dogs=[bruno,blitz],primary_breed=cocker)

>>> print(json.dumps(durham, cls=ValleyEncoder))
{
  "dogs": [
    {
      "breed": {
        "name": "Cocker Spaniel",
        "_type": "valley.tests.examples.schemas.Breed"
      },
      "name": "Bruno",
      "_type": "valley.tests.examples.schemas.Dog"
    },
    {
      "breed": {
        "name": "Cockapoo",
        "_type": "valley.tests.examples.schemas.Breed"
      },
      "name": "Blitz",
      "_type": "valley.tests.examples.schemas.Dog"
    }
  ],
  "primary_breed": {
    "name": "Cocker Spaniel",
    "_type": "valley.tests.examples.schemas.Breed"
  },
  "name": "Durham",
  "_type": "valley.tests.examples.schemas.Troop"
}

ValleyEncoderNoType

Same as ValleyEncoder except it doesn't add _type attributes.

Example
import json
from valley.utils.json_utils import ValleyEncoderNoType
from valley.contrib import Schema
from valley.properties import *

class NameSchema(Schema):
    _create_error_dict = True
    name = CharProperty(required=True)

    def __unicode__(self):
        return self.name


class Breed(NameSchema):
    pass


class Dog(NameSchema):
    breed = ForeignProperty(Breed,required=True)


class Troop(NameSchema):
    dogs = ForeignListProperty(Dog)
    primary_breed = ForeignProperty(Breed)


>>> cocker = Breed(name='Cocker Spaniel')

>>> cockapoo = Breed(name='Cockapoo')

>>> bruno = Dog(name='Bruno',breed=cocker)

>>> blitz = Dog(name='Blitz',breed=cockapoo)

>>> durham = Troop(name='Durham',dogs=[bruno,blitz],primary_breed=cocker)

>>> print(json.dumps(durham, cls=ValleyEncoderNoType))
{
  "dogs": [
    {
      "breed": {
        "name": "Cocker Spaniel"
      },
      "name": "Bruno"
    },
    {
      "breed": {
        "name": "Cockapoo"
      },
      "name": "Blitz"
    }
  ],
  "primary_breed": {
    "name": "Cocker Spaniel"
  },
  "name": "Durham"
}

ValleyDecoder

Paired with the json.loads it create Schema objects from json

Example
import json

from valley.utils.json_utils import ValleyDecoder

json_string = '{
  "dogs": [
    {
      "breed": {
        "name": "Cocker Spaniel",
        "_type": "valley.tests.examples.schemas.Breed"
      },
      "name": "Bruno",
      "_type": "valley.tests.examples.schemas.Dog"
    },
    {
      "breed": {
        "name": "Cockapoo",
        "_type": "valley.tests.examples.schemas.Breed"
      },
      "name": "Blitz",
      "_type": "valley.tests.examples.schemas.Dog"
    }
  ],
  "primary_breed": {
    "name": "Cocker Spaniel",
    "_type": "valley.tests.examples.schemas.Breed"
  },
  "name": "Durham",
  "_type": "valley.tests.examples.schemas.Troop"
}'

>>> durham = json.loads(json_string,cls=ValleyDecoder)
<Troop: Durham >
>>> durham.name
'Durham
>>> durham.primary_breed.name
Cocker Spaniel

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

valley-1.5.8.tar.gz (27.5 kB view details)

Uploaded Source

Built Distribution

valley-1.5.8-py3-none-any.whl (27.9 kB view details)

Uploaded Python 3

File details

Details for the file valley-1.5.8.tar.gz.

File metadata

  • Download URL: valley-1.5.8.tar.gz
  • Upload date:
  • Size: 27.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.0 CPython/3.10.2 Linux/5.15.0-1017-azure

File hashes

Hashes for valley-1.5.8.tar.gz
Algorithm Hash digest
SHA256 88342fa4af854b8e9e426776995c9c2c690b432ea35c0c9529fa0abb62e553e3
MD5 36e66d10f01798e8e75c458f33cca264
BLAKE2b-256 0dfa1f0dcb1564c52922ec04a4df7f2fa84ae2d8f9a550fe161be180731ff352

See more details on using hashes here.

File details

Details for the file valley-1.5.8-py3-none-any.whl.

File metadata

  • Download URL: valley-1.5.8-py3-none-any.whl
  • Upload date:
  • Size: 27.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.0 CPython/3.10.2 Linux/5.15.0-1017-azure

File hashes

Hashes for valley-1.5.8-py3-none-any.whl
Algorithm Hash digest
SHA256 c30c0bdb30e5be561dd4332281fc53315c4c34f174d268d8cc7496a6f47ee314
MD5 935aef6701c12c0ba7f95ef5af12c718
BLAKE2b-256 fc6104a7ba2ef5dcf0c2fd8724baba3a211374cf4fa3e7357c2cd7167f144ae8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page