Skip to main content

Compute valor metrics locally.

Project description

valor-lite: Fast, local machine learning evaluation.

valor-lite is a lightweight, numpy-based library designed for fast and seamless evaluation of machine learning models. It is optimized for environments where quick, responsive evaluations are essential, whether as part of a larger service or embedded within user-facing tools.

valor-lite is maintained by Striveworks, a cutting-edge MLOps company based in Austin, Texas. If you'd like to learn more or have questions, we invite you to connect with us on Slack or explore our GitHub repository.

For additional details, be sure to check out our user documentation. We're excited to support you in making the most of Valor!

Usage

Classification

from valor_lite.classification import DataLoader, Classification, MetricType

classifications = [
    Classification(
        uid="uid0",
        groundtruth="dog",
        predictions=["dog", "cat", "bird"],
        scores=[0.75, 0.2, 0.05],
    ),
    Classification(
        uid="uid1",
        groundtruth="cat",
        predictions=["dog", "cat", "bird"],
        scores=[0.41, 0.39, 0.1],
    ),
]

loader = DataLoader()
loader.add_data(classifications)
evaluator = loader.finalize()

metrics = evaluator.evaluate()

assert metrics[MetricType.Precision][0].to_dict() == {
    'type': 'Precision',
    'value': [0.5],
    'parameters': {
        'score_thresholds': [0.0],
        'hardmax': True,
        'label': 'dog'
    }
}

Object Detection

from valor_lite.object_detection import DataLoader, Detection, BoundingBox, MetricType

detections = [
    Detection(
        uid="uid0",
        groundtruths=[
            BoundingBox(
                xmin=0, xmax=10,
                ymin=0, ymax=10,
                labels=["dog"]
            ),
            BoundingBox(
                xmin=20, xmax=30,
                ymin=20, ymax=30,
                labels=["cat"]
            ),
        ],
        predictions=[
            BoundingBox(
                xmin=1, xmax=11,
                ymin=1, ymax=11,
                labels=["dog", "cat", "bird"],
                scores=[0.85, 0.1, 0.05]
            ),
            BoundingBox(
                xmin=21, xmax=31,
                ymin=21, ymax=31,
                labels=["dog", "cat", "bird"],
                scores=[0.34, 0.33, 0.33]
            ),
        ],
    ),
]

loader = DataLoader()
loader.add_bounding_boxes(detections)
evaluator = loader.finalize()

metrics = evaluator.evaluate()

assert metrics[MetricType.Precision][0].to_dict() == {
    'type': 'Precision',
    'value': 0.5,
    'parameters': {
        'iou_threshold': 0.5,
        'score_threshold': 0.5,
        'label': 'dog'
    }
}

Semantic Segmentation

import numpy as np
from valor_lite.semantic_segmentation import DataLoader, Segmentation, Bitmask, MetricType

segmentations = [
    Segmentation(
        uid="uid0",
        groundtruths=[
            Bitmask(
                mask=np.random.randint(2, size=(10,10), dtype=np.bool_),
                label="sky",
            ),
            Bitmask(
                mask=np.random.randint(2, size=(10,10), dtype=np.bool_),
                label="ground",
            )
        ],
        predictions=[
            Bitmask(
                mask=np.random.randint(2, size=(10,10), dtype=np.bool_),
                label="sky",
            ),
            Bitmask(
                mask=np.random.randint(2, size=(10,10), dtype=np.bool_),
                label="ground",
            )
        ]
    ),
]

loader = DataLoader()
loader.add_data(segmentations)
evaluator = loader.finalize()

print(metrics[MetricType.Precision][0])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

valor_lite-0.33.11.tar.gz (799.3 kB view details)

Uploaded Source

Built Distribution

valor_lite-0.33.11-py3-none-any.whl (40.6 kB view details)

Uploaded Python 3

File details

Details for the file valor_lite-0.33.11.tar.gz.

File metadata

  • Download URL: valor_lite-0.33.11.tar.gz
  • Upload date:
  • Size: 799.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for valor_lite-0.33.11.tar.gz
Algorithm Hash digest
SHA256 1ffe3b803d8da3541bd6d5cdd69b08bb778f07e631f54ea6d7998ed25e1c1339
MD5 15283b97de22196bf54ddbedc1ae7af0
BLAKE2b-256 ddd643bd0184ce02a4dd6d2abbc3cbb1047ad818a3332cebbe590b3e1ea74fef

See more details on using hashes here.

File details

Details for the file valor_lite-0.33.11-py3-none-any.whl.

File metadata

  • Download URL: valor_lite-0.33.11-py3-none-any.whl
  • Upload date:
  • Size: 40.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for valor_lite-0.33.11-py3-none-any.whl
Algorithm Hash digest
SHA256 5c86de7847924a885486fc1acf707ee9d814ac97c17d3e9892cf38cd8890bc1e
MD5 fdc2b782ddd1715549580d9cf1060c25
BLAKE2b-256 b879138f3e6e7a1b9a8cdef7eb20b94c3fbda8978cdaea6121191d9453219430

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page