Skip to main content

Compute valor metrics locally.

Project description

valor-lite: Fast, local machine learning evaluation.

valor-lite is a lightweight, numpy-based library designed for fast and seamless evaluation of machine learning models. It is optimized for environments where quick, responsive evaluations are essential, whether as part of a larger service or embedded within user-facing tools.

valor-lite is maintained by Striveworks, a cutting-edge MLOps company based in Austin, Texas. If you'd like to learn more or have questions, we invite you to connect with us on Slack or explore our GitHub repository.

For additional details, be sure to check out our user documentation. We're excited to support you in making the most of Valor!

Usage

Classification

from valor_lite.classification import DataLoader, Classification, MetricType

classifications = [
    Classification(
        uid="uid0",
        groundtruth="dog",
        predictions=["dog", "cat", "bird"],
        scores=[0.75, 0.2, 0.05],
    ),
    Classification(
        uid="uid1",
        groundtruth="cat",
        predictions=["dog", "cat", "bird"],
        scores=[0.41, 0.39, 0.1],
    ),
]

loader = DataLoader()
loader.add_data(classifications)
evaluator = loader.finalize()

metrics = evaluator.evaluate()

assert metrics[MetricType.Precision][0].to_dict() == {
    'type': 'Precision',
    'value': [0.5],
    'parameters': {
        'score_thresholds': [0.0],
        'hardmax': True,
        'label': 'dog'
    }
}

Object Detection

from valor_lite.object_detection import DataLoader, Detection, BoundingBox, MetricType

detections = [
    Detection(
        uid="uid0",
        groundtruths=[
            BoundingBox(
                xmin=0, xmax=10,
                ymin=0, ymax=10,
                labels=["dog"]
            ),
            BoundingBox(
                xmin=20, xmax=30,
                ymin=20, ymax=30,
                labels=["cat"]
            ),
        ],
        predictions=[
            BoundingBox(
                xmin=1, xmax=11,
                ymin=1, ymax=11,
                labels=["dog", "cat", "bird"],
                scores=[0.85, 0.1, 0.05]
            ),
            BoundingBox(
                xmin=21, xmax=31,
                ymin=21, ymax=31,
                labels=["dog", "cat", "bird"],
                scores=[0.34, 0.33, 0.33]
            ),
        ],
    ),
]

loader = DataLoader()
loader.add_bounding_boxes(detections)
evaluator = loader.finalize()

metrics = evaluator.evaluate()

assert metrics[MetricType.Precision][0].to_dict() == {
    'type': 'Precision',
    'value': 0.5,
    'parameters': {
        'iou_threshold': 0.5,
        'score_threshold': 0.5,
        'label': 'dog'
    }
}

Semantic Segmentation

import numpy as np
from valor_lite.semantic_segmentation import DataLoader, Segmentation, Bitmask, MetricType

segmentations = [
    Segmentation(
        uid="uid0",
        groundtruths=[
            Bitmask(
                mask=np.random.randint(2, size=(10,10), dtype=np.bool_),
                label="sky",
            ),
            Bitmask(
                mask=np.random.randint(2, size=(10,10), dtype=np.bool_),
                label="ground",
            )
        ],
        predictions=[
            Bitmask(
                mask=np.random.randint(2, size=(10,10), dtype=np.bool_),
                label="sky",
            ),
            Bitmask(
                mask=np.random.randint(2, size=(10,10), dtype=np.bool_),
                label="ground",
            )
        ]
    ),
]

loader = DataLoader()
loader.add_data(segmentations)
evaluator = loader.finalize()

print(metrics[MetricType.Precision][0])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

valor_lite-0.33.12.tar.gz (799.3 kB view details)

Uploaded Source

Built Distribution

valor_lite-0.33.12-py3-none-any.whl (40.6 kB view details)

Uploaded Python 3

File details

Details for the file valor_lite-0.33.12.tar.gz.

File metadata

  • Download URL: valor_lite-0.33.12.tar.gz
  • Upload date:
  • Size: 799.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for valor_lite-0.33.12.tar.gz
Algorithm Hash digest
SHA256 5ebcde94415d03b17985f879df01241d893b68d2d315bee292940bf67f6a4936
MD5 634d0afcea735d6752ca45899c308e60
BLAKE2b-256 33cfeb5db160986c387e13e222a338067dbf2b14496f430b8de5650fa458bd2b

See more details on using hashes here.

File details

Details for the file valor_lite-0.33.12-py3-none-any.whl.

File metadata

  • Download URL: valor_lite-0.33.12-py3-none-any.whl
  • Upload date:
  • Size: 40.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for valor_lite-0.33.12-py3-none-any.whl
Algorithm Hash digest
SHA256 05a6429749f4ea1e581228aa5028695e2fc24b5af7f80a05b67f067d7d5b0462
MD5 6d3623327eb56ff73fdda98dd45844d0
BLAKE2b-256 bf4d6fca8c9116aba8874581c73e2b2b9dd7fbabf18b2a1d0e11892dfa8a92db

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page