Skip to main content

Vantage6 client

Project description

<img src=”https://github.com/IKNL/guidelines/blob/master/resources/logos/vantage6.png?raw=true” width=200 align=”right”>

[![Coverage Status](https://coveralls.io/repos/github/IKNL/ppDLI/badge.svg?branch=master)](https://coveralls.io/github/IKNL/ppDLI?branch=master)

[![Codacy Badge](https://api.codacy.com/project/badge/Grade/bcde6ed5c77440c6969462bfead0774c)](https://app.codacy.com/app/frankcorneliusmartin/ppDLI?utm_source=github.com&utm_medium=referral&utm_content=IKNL/ppDLI&utm_campaign=Badge_Grade_Dashboard)

[![PyPI version](https://badge.fury.io/py/ppDLI.svg)](https://badge.fury.io/py/ppDLI)

[![Build Status](https://travis-ci.org/IKNL/ppDLI.svg?branch=master)](https://travis-ci.org/IKNL/ppDLI)

[![DOI](https://zenodo.org/badge/120275991.svg)](https://zenodo.org/badge/latestdoi/120275991)

# Introduction

The growing complexity of cancer diagnosis and treatment requires data sets that are larger than currently available in a single hospital or even in cancer registries. However, sharing patient data is difficult due to patient privacy and data protection needs. Federated learning technology has the potential to overcome these limitations. In this approach, organizations can collaborate by exchanging aggregated data and/or statistics while keeping the underlying data safely on site and undisclosed. This repository contains software (and instructions) to setup a federated learning infrastructure.

For an overview of the architecture and information on how to use the infrastructure, please see [https://vantage6.ai](https://vantage6.ai). For documentation, please see [https://docs.distributedlearning.ai/](https://docs.distributedlearning.ai/).

## Installation

See the [documentation](https://docs.distributedlearning.ai/) for detailed instructions on how to install the server and nodes.

Platform: UNKNOWN Requires-Python: >=3.6 Description-Content-Type: text/markdown

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vantage6-client-1.0.0.tar.gz (11.0 kB view details)

Uploaded Source

Built Distribution

vantage6_client-1.0.0-py3-none-any.whl (15.3 kB view details)

Uploaded Python 3

File details

Details for the file vantage6-client-1.0.0.tar.gz.

File metadata

  • Download URL: vantage6-client-1.0.0.tar.gz
  • Upload date:
  • Size: 11.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0.post20200309 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

File hashes

Hashes for vantage6-client-1.0.0.tar.gz
Algorithm Hash digest
SHA256 f117fe1f9c81c66958b1a01d3b7541a2049e864e93611349d4c6249bdbcf34f5
MD5 054e4a1e742a40b021903043c771721d
BLAKE2b-256 4a98bc946bb2d135f54757ce1138674425c6e105fd989b5a51ceaa40eec3cc9b

See more details on using hashes here.

File details

Details for the file vantage6_client-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: vantage6_client-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 15.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0.post20200309 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

File hashes

Hashes for vantage6_client-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 883b8bb06634b7f458aa5ccc6c927b0f9c22fdfd3e2648d319fe08e201fea279
MD5 8f0f2e78c65525c381a29d2b28283f66
BLAKE2b-256 b83d25f3db6dd94eb36272d1aba0873ef91aa8bc3412fc61c8ce2f5e1ff8263c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page