Skip to main content

Vantage6 client

Project description

<img src=”https://github.com/IKNL/guidelines/blob/master/resources/logos/vantage6.png?raw=true” width=200 align=”right”>

[![Coverage Status](https://coveralls.io/repos/github/IKNL/ppDLI/badge.svg?branch=master)](https://coveralls.io/github/IKNL/ppDLI?branch=master)

[![Codacy Badge](https://api.codacy.com/project/badge/Grade/bcde6ed5c77440c6969462bfead0774c)](https://app.codacy.com/app/frankcorneliusmartin/ppDLI?utm_source=github.com&utm_medium=referral&utm_content=IKNL/ppDLI&utm_campaign=Badge_Grade_Dashboard)

[![PyPI version](https://badge.fury.io/py/ppDLI.svg)](https://badge.fury.io/py/ppDLI)

[![Build Status](https://travis-ci.org/IKNL/ppDLI.svg?branch=master)](https://travis-ci.org/IKNL/ppDLI)

[![DOI](https://zenodo.org/badge/120275991.svg)](https://zenodo.org/badge/latestdoi/120275991)

# Introduction

The growing complexity of cancer diagnosis and treatment requires data sets that are larger than currently available in a single hospital or even in cancer registries. However, sharing patient data is difficult due to patient privacy and data protection needs. Federated learning technology has the potential to overcome these limitations. In this approach, organizations can collaborate by exchanging aggregated data and/or statistics while keeping the underlying data safely on site and undisclosed. This repository contains software (and instructions) to setup a federated learning infrastructure.

For an overview of the architecture and information on how to use the infrastructure, please see [https://vantage6.ai](https://vantage6.ai). For documentation, please see [https://docs.distributedlearning.ai/](https://docs.distributedlearning.ai/).

## Installation

See the [documentation](https://docs.distributedlearning.ai/) for detailed instructions on how to install the server and nodes.

Platform: UNKNOWN Requires-Python: >=3.6 Description-Content-Type: text/markdown

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vantage6-client-1.0.0b13.tar.gz (11.0 kB view details)

Uploaded Source

Built Distribution

vantage6_client-1.0.0b13-py3-none-any.whl (15.3 kB view details)

Uploaded Python 3

File details

Details for the file vantage6-client-1.0.0b13.tar.gz.

File metadata

  • Download URL: vantage6-client-1.0.0b13.tar.gz
  • Upload date:
  • Size: 11.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0.post20200309 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

File hashes

Hashes for vantage6-client-1.0.0b13.tar.gz
Algorithm Hash digest
SHA256 f22b8ff0016ef761942d5f8334b69ff39c199233e0624b692fe2bd9d986170d2
MD5 7e92614b8e6def19efe9c87022d84d4f
BLAKE2b-256 0e406d2e614f05a8c209f00aa2567bd5ae11451324e3619a94ca2277ebc883fa

See more details on using hashes here.

File details

Details for the file vantage6_client-1.0.0b13-py3-none-any.whl.

File metadata

  • Download URL: vantage6_client-1.0.0b13-py3-none-any.whl
  • Upload date:
  • Size: 15.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0.post20200309 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

File hashes

Hashes for vantage6_client-1.0.0b13-py3-none-any.whl
Algorithm Hash digest
SHA256 848d88128a6883289e1aa299e3c353e832ec7e9052123bb61fc10003f2c0e4ea
MD5 0f34b653b67b7c2f3f5d562599374014
BLAKE2b-256 f84ac7ffa7210c76ce0429e5ec4f6123efb079e33f336fa03930da851ea474e9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page