Skip to main content

Vantage6 client

Project description

<img src=”https://github.com/IKNL/guidelines/blob/master/resources/logos/vantage6.png?raw=true” width=200 align=”right”>

[![Coverage Status](https://coveralls.io/repos/github/IKNL/ppDLI/badge.svg?branch=master)](https://coveralls.io/github/IKNL/ppDLI?branch=master)

[![Codacy Badge](https://api.codacy.com/project/badge/Grade/bcde6ed5c77440c6969462bfead0774c)](https://app.codacy.com/app/frankcorneliusmartin/ppDLI?utm_source=github.com&utm_medium=referral&utm_content=IKNL/ppDLI&utm_campaign=Badge_Grade_Dashboard)

[![PyPI version](https://badge.fury.io/py/ppDLI.svg)](https://badge.fury.io/py/ppDLI)

[![Build Status](https://travis-ci.org/IKNL/ppDLI.svg?branch=master)](https://travis-ci.org/IKNL/ppDLI)

[![DOI](https://zenodo.org/badge/120275991.svg)](https://zenodo.org/badge/latestdoi/120275991)

# Introduction

The growing complexity of cancer diagnosis and treatment requires data sets that are larger than currently available in a single hospital or even in cancer registries. However, sharing patient data is difficult due to patient privacy and data protection needs. Federated learning technology has the potential to overcome these limitations. In this approach, organizations can collaborate by exchanging aggregated data and/or statistics while keeping the underlying data safely on site and undisclosed. This repository contains software (and instructions) to setup a federated learning infrastructure.

For an overview of the architecture and information on how to use the infrastructure, please see [https://vantage6.ai](https://vantage6.ai). For documentation, please see [https://docs.distributedlearning.ai/](https://docs.distributedlearning.ai/).

## Installation

See the [documentation](https://docs.distributedlearning.ai/) for detailed instructions on how to install the server and nodes.

Platform: UNKNOWN Requires-Python: >=3.6 Description-Content-Type: text/markdown

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vantage6-client-1.0.0b8.tar.gz (10.9 kB view details)

Uploaded Source

Built Distribution

vantage6_client-1.0.0b8-py3-none-any.whl (15.3 kB view details)

Uploaded Python 3

File details

Details for the file vantage6-client-1.0.0b8.tar.gz.

File metadata

  • Download URL: vantage6-client-1.0.0b8.tar.gz
  • Upload date:
  • Size: 10.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0.post20200309 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

File hashes

Hashes for vantage6-client-1.0.0b8.tar.gz
Algorithm Hash digest
SHA256 80f8f3b4317e33e158674880a28650977270063e89541240a65b54c9f54d777a
MD5 e1be7ca990b5ad255e676a26453f3080
BLAKE2b-256 dccd4b20a125c8ddd3aab36408260d1743080eeb751f964a73d0ff2766a2297c

See more details on using hashes here.

File details

Details for the file vantage6_client-1.0.0b8-py3-none-any.whl.

File metadata

  • Download URL: vantage6_client-1.0.0b8-py3-none-any.whl
  • Upload date:
  • Size: 15.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0.post20200309 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

File hashes

Hashes for vantage6_client-1.0.0b8-py3-none-any.whl
Algorithm Hash digest
SHA256 246714fdfcbc85ca32e953c964221d40cf0d6db43f1571f23903ee06a5ed7c82
MD5 03637c53936398a8b06df4c49d8d9cf0
BLAKE2b-256 0f4c23bc829c70b69a5a2092cfed1f6b2db444b43c718b08b1e1a177aa80817f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page