Skip to main content

Versatile tensor network library for variational ground state simulations in two spatial dimensions

Project description

variPEPS -- Versatile tensor network library for variational ground state simulations in two spatial dimensions.

DOI Documentation Status

variPEPS is the Python variant of the tensor network library developed for variational ground state simulations in two spatial dimensions applying gradient optimization using automatic differentation.

For a detailed report on the method, please see our publication currently available as preprint on arXiv: https://arxiv.org/abs/2308.12358.

Installation

Installation using pip

The current version of the variPEPS Python package is available on PyPI. It can be easily installed by using the Python package manager pip:

$ python3 -m pip install variPEPS

Installation using poetry

The dependencies in this project are managed by poetry and the tool can also be used to install the package including a fixed set of dependencies with a specific version. For more details how poetry is operating, please see the upstream documentation.

To install dependencies you can just run in the main folder of the variPEPS project:

$ poetry install

or if you do not need the development packages:

$ poetry install --no-dev

Usage

For detailed information how to use the package we want to point out to the documentation of the project.

Citation

We are happy if you want to use the framework for your research. For the citation of our work we ask to use the following references (the publication with the method description, the Zenodo reference for this Git repository and the repository itself):

  • J. Naumann, E. L. Weerda, M. Rizzi, J. Eisert, and P. Schmoll, An introduction to infinite projected entangled-pair state methods for variational ground state simulations using automatic differentiation, SciPost Phys. Lect. Notes 86 (2024), doi:10.21468/SciPostPhysLectNotes.86.
  • J. Naumann, P. Schmoll, F. Wilde, and F. Krein, variPEPS (Python version), Zenodo.

The BibTeX code for these references are:

@article{10.21468/SciPostPhysLectNotes.86,
	title={{An introduction to infinite projected entangled-pair state methods for variational ground state simulations using automatic differentiation}},
	author={Jan Naumann and Erik Lennart Weerda and Matteo Rizzi and Jens Eisert and Philipp Schmoll},
	journal={SciPost Phys. Lect. Notes},
	pages={86},
	year={2024},
	publisher={SciPost},
	doi={10.21468/SciPostPhysLectNotes.86},
	url={https://scipost.org/10.21468/SciPostPhysLectNotes.86},
}

@software{naumann24_varipeps_python,
    author =        {Jan Naumann and Philipp Schmoll and Frederik Wilde and Finn Krein},
    title =         {{variPEPS (Python version)}},
    howpublished =  {Zenodo},
    url =           {https://doi.org/10.5281/ZENODO.10852390},
    doi =           {10.5281/ZENODO.10852390},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

varipeps-0.6.8.tar.gz (109.4 kB view details)

Uploaded Source

Built Distribution

varipeps-0.6.8-py3-none-any.whl (135.7 kB view details)

Uploaded Python 3

File details

Details for the file varipeps-0.6.8.tar.gz.

File metadata

  • Download URL: varipeps-0.6.8.tar.gz
  • Upload date:
  • Size: 109.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for varipeps-0.6.8.tar.gz
Algorithm Hash digest
SHA256 2ee8afe92509f575d485bff77e253fa3fba56365fc862ce75000eedf5a5507cc
MD5 2f5c602bfac3235b67a01cca874ad311
BLAKE2b-256 764319a21b02222fce4f61d13df2726e961a5e19c4c33ac7e580e35af66168fe

See more details on using hashes here.

Provenance

The following attestation bundles were made for varipeps-0.6.8.tar.gz:

Publisher: release.yml on variPEPS/variPEPS_Python

Attestations:

File details

Details for the file varipeps-0.6.8-py3-none-any.whl.

File metadata

  • Download URL: varipeps-0.6.8-py3-none-any.whl
  • Upload date:
  • Size: 135.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for varipeps-0.6.8-py3-none-any.whl
Algorithm Hash digest
SHA256 feb938a72d166415f9443129fa9cbc0e9e0708c7296548ea32f277ff83a9d820
MD5 18274244f9794ec85f4541e3675fc190
BLAKE2b-256 216333b8c1a2376ea597f1460113cffb31917f929f9512d8807dc3152de9a9e1

See more details on using hashes here.

Provenance

The following attestation bundles were made for varipeps-0.6.8-py3-none-any.whl:

Publisher: release.yml on variPEPS/variPEPS_Python

Attestations:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page