Skip to main content

A Python package to the VAX method, supporting multivariate data explanation by Jumping Emerging Patterns.

Project description

VAX Method

The multiVariate dAta eXplanation (VAX) is a new Visual Analytics (VA) method to support identifying and visual interpreting patterns in multivariate datasets. VAX uses the concept of Jumping Emerging Patterns, inherent interpretable logic statements representing class-variable relationships (patterns) derived from random Decision Trees. VAX employs aggregated Jumping Emerging Patterns (JEPs) to capture intricate patterns in class-labeled datasets. A matrix-like visual metaphor is used for JEPs visualization, where patterns are rows, variables are columns, and data distribution conveyed using histograms are matrix cells. Based on matrix visualization, meaningful visual representations can be reached by filtering and ordering patterns (rows) and variables (columns). Furthermore, VAX supports similarity maps produced by Dimensionality Reduction (DR) techniques to convey a better overall image of a dataset (e.g., clusters and outliers) using the JEPs lens.

For presenting the method here, the Iris Dataset is employed.

Cite us: M. Popolin Neto and F. V. Paulovich, "Multivariate Data Explanation by Jumping Emerging Patterns Visualization," in IEEE Transactions on Visualization and Computer Graphics, 2022, doi: 10.1109/TVCG.2022.3223529.

BibTeX: @article{PopolinNeto:2022:VAX, author={Popolin{ }Neto, Mário and Paulovich, Fernando V.}, journal={IEEE Transactions on Visualization and Computer Graphics}, title={Multivariate Data Explanation by Jumping Emerging Patterns Visualization}, year={2022}, volume={}, number={}, pages={1-16}, doi={10.1109/TVCG.2022.3223529}}

Iris Dataset

import numpy as np
import sklearn.datasets as datasets


dataset = datasets.load_iris()

X = dataset.data
y = dataset.target

feature_names = dataset.feature_names
target_names = dataset.target_names

VAX

JEPs Extraction, Selection, and Aggregation

from vaxm import VAX


dtm = VAX( n_features = len( feature_names ), n_classes = len( target_names ), feature_names = np.array( feature_names ), class_names = np.array( target_names ), bins = 10, verbose = 0 )

dtm.fit( X, y, k_trees = 1024, save_stages = True, file_name = './IRIS-VAX-k1024', n_jobs = 4, random_seed = 1988 )
print('dtm.n_rules_', dtm.n_rules_)
dtm.n_rules_ 9

Similarity Map Creation

from sklearn.manifold import MDS


X_ext, y_pclass = dtm.extend_X( X, lam = 0.90 )

embedding = MDS( n_components = 2, dissimilarity = 'euclidean', normalized_stress = 'auto', n_jobs = 1, random_state = 1988  )
X_emb = embedding.fit_transform( X_ext )

94% Data Coverage

JEPs Visualization

exp = dtm.explanation( r_order = 'support', f_order = 'importance', data_coverage_max = 0.94 )

exp.create_svg( draw_row_labels = True, draw_col_labels = True, draw_rows_line = False, draw_cols_line = False, col_label_degrees = 10, draw_box_frame = False, inner_pad_row = 5, inner_pad_col = 5, cell_background = 'all', cell_background_color = '#f2f2f2',  draw_frame_top_legend = False, draw_box_row_left_legend = True, draw_frame_left_legend = False, rows_left_legend_show_value = True, draw_frame_right_legend = False, draw_box_row_right_legend = False, rows_right_legend_width = 75/3, binary_legend = [ '< 0.05', '>= 0.05' ], margin_left = 400, margin_top = 550, margin_right = 450, margin_bottom = 350, matrix_legend_ratio = 0.80 )

exp.save( 'JEPs-3P.png', pixel_scale = 5 )
exp.save( 'JEPs-3P.svg' )
exp.display_jn()

svg

Similarity Map Visualization

import matplotlib.pyplot as plt


dtm.plot_map( X_emb, y, exp.rules_, plt, mode = 'horizontal', color_map1 = np.array( [ '#f2f2f2ff', '#1f77b3', '#ff7e0e', '#bcbc21' ] ), color_map2 = np.array( [ '#f2f2f2ff', '#e277c1', '#9367bc', '#bc0049', '#00aa79', '#ffdb00', '#d89c00', '#e41a1c', '#8c564b', '#ff9a75' ] ) )

plt.tight_layout()
plt.savefig( 'MAP-3P.png', dpi = 300, bbox_inches = 'tight' )
plt.savefig( 'MAP-3P.svg', bbox_inches = 'tight' )
plt.show()

svg

Support Matrix Visualization

instance_names = np.array( [ 'i' + str( i ) for i in range( X.shape[ 0 ] ) ] )

exp.smatrix( y = y, instance_names = instance_names )

exp.create_svg_smatrix( height = 540, draw_row_labels = True, draw_col_labels = True, draw_box_frame = True, draw_cell_frame = True, inner_pad_row = 0, inner_pad_col = 0, cell_background_color = '#f2f2f2', col_label_degrees = 90, col_label_font_size = 12, info_text = 'Iris Dataset', margin_bottom = 75, margin_right = 250, matrix_legend_ratio = 0.80 )

exp.save_smatrix( 'SMATRIX-3P.png', pixel_scale = 5 )
exp.save_smatrix( 'SMATRIX-3P.svg' )
exp.display_smatrix_jn()

svg

100% Data Coverage

JEPs Visualization

exp = dtm.explanation( r_order = 'support', f_order = 'importance' )

exp.create_svg( draw_row_labels = True, draw_col_labels = True, draw_rows_line = False, draw_cols_line = False, col_label_degrees = 10, draw_box_frame = False, inner_pad_row = 5, inner_pad_col = 5, cell_background = 'all', cell_background_color = '#f2f2f2',  draw_frame_top_legend = False, draw_box_row_left_legend = True, draw_frame_left_legend = False, rows_left_legend_show_value = True, draw_frame_right_legend = False, draw_box_row_right_legend = False, rows_right_legend_width = 75/3, binary_legend = [ '< 0.05', '>= 0.05' ], margin_left = 400, margin_top = 450, margin_right = 350, margin_bottom = 150, matrix_legend_ratio = 0.80 )

exp.save( 'JEPs.png', pixel_scale = 5 )
exp.save( 'JEPs.svg' )
exp.display_jn()

svg

Similarity Map Visualization

dtm.plot_map( X_emb, y, exp.rules_, plt, mode = 'horizontal', color_map1 = np.array( [ '#f2f2f2ff', '#1f77b3', '#ff7e0e', '#bcbc21' ] ), color_map2 = np.array( [ '#f2f2f2ff', '#e277c1', '#9367bc', '#bc0049', '#00aa79', '#ffdb00', '#d89c00', '#e41a1c', '#8c564b', '#ff9a75' ] ), ncol_map2 = 7, bbox_to_anchor = ( 0.5, 1.19 ) )

plt.tight_layout()
plt.savefig( 'MAP.png', dpi = 300, bbox_inches = 'tight' )
plt.savefig( 'MAP.svg', bbox_inches = 'tight' )
plt.show()

svg

Support Matrix Visualization

exp.smatrix( y = y, instance_names = instance_names )

exp.create_svg_smatrix( height = 540, draw_row_labels = True, draw_col_labels = True, draw_box_frame = True, draw_cell_frame = True, inner_pad_row = 0, inner_pad_col = 0, cell_background_color = '#f2f2f2', col_label_degrees = 90, col_label_font_size = 12, info_text = 'Iris Dataset', margin_bottom = 75, margin_right = 250, matrix_legend_ratio = 0.80 )

exp.save_smatrix( 'SMATRIX.png', pixel_scale = 5 )
exp.save_smatrix( 'SMATRIX.svg' )
exp.display_smatrix_jn()

svg

References

VAX uses the Logic Rules Matrix package, which also supports the Explainable Matrix - ExMatrix method. Both ExMatrix and VAX employ a matrix-like visual metaphor for logic rules visualization, where rules are rows, features (variables) are columns, and rules predicates are cells.

The ExMatrix must be used for model (predictive) explanations (model interpretability/explainability), while VAX must be employed for data (descriptive) explanations (phenomenon understanding).

A flowchart-based summarization.


[1] Popolin Neto, M. (2021). Random Forest interpretability - explaining classification models and multivariate data through logic rules visualizations. Doctoral Thesis, Instituto de Ciências Matemáticas e de Computação, University of São Paulo, São Carlos. doi:10.11606/T.55.2021.tde-03032022-105725.

BibTeX: @phdthesis{PopolinNeto:2021:Thesis, doi = {10.11606/t.55.2021.tde-03032022-105725}, publisher = {Universidade de Sao Paulo, Agencia {USP} de Gestao da Informacao Academica ({AGUIA})}, author = {M{'{a}}rio Popolin{ }Neto}, title = {Random Forest interpretability - explaining classification models and multivariate data through logic rules visualizations}}


[2] M. Popolin Neto and F. V. Paulovich, "Explainable Matrix - Visualization for Global and Local Interpretability of Random Forest Classification Ensembles," in IEEE Transactions on Visualization and Computer Graphics, vol. 27, no. 2, pp. 1427-1437, Feb. 2021, doi: 10.1109/TVCG.2020.3030354.

BibTeX: @article{PopolinNeto:2020:ExMatrix, author={Popolin{ }Neto, Mário and Paulovich, Fernando V.}, journal={IEEE Transactions on Visualization and Computer Graphics}, title={Explainable Matrix - Visualization for Global and Local Interpretability of Random Forest Classification Ensembles}, year={2021}, volume={27}, number={2}, pages={1427-1437}, doi={10.1109/TVCG.2020.3030354}}


[3] M. Popolin Neto and F. V. Paulovich, "Multivariate Data Explanation by Jumping Emerging Patterns Visualization," in IEEE Transactions on Visualization and Computer Graphics, 2022, doi: 10.1109/TVCG.2022.3223529.

BibTeX: @article{PopolinNeto:2022:VAX, author={Popolin{ }Neto, Mário and Paulovich, Fernando V.}, journal={IEEE Transactions on Visualization and Computer Graphics}, title={Multivariate Data Explanation by Jumping Emerging Patterns Visualization}, year={2022}, volume={}, number={}, pages={1-16}, doi={10.1109/TVCG.2022.3223529}}


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

vaxm-0.1.4-py3-none-any.whl (11.6 kB view details)

Uploaded Python 3

File details

Details for the file vaxm-0.1.4-py3-none-any.whl.

File metadata

  • Download URL: vaxm-0.1.4-py3-none-any.whl
  • Upload date:
  • Size: 11.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for vaxm-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 92f354bca32cc310190768fdaff92e528bd6befad197c38ece1e3f6695cbabe7
MD5 48e3aa2e761b0b9d6ee6286ad7d12fa9
BLAKE2b-256 7795e7a39302b510994460db1db27755e35199bdeb9e070ae98b1ec89351f9da

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page