Skip to main content

Video generation benchmark

Project description

vbench_logo

VBench is a comprehensive benchmark suite for video generative models. You can use VBench to evaluate video generation models from 16 different ability aspects.

This project is the PyPI implementation of the following research:

VBench: Comprehensive Benchmark Suite for Video Generative Models
Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing Wu, Qingyang Jin, Nattapol Chanpaisit, Yaohui Wang, Xinyuan Chen, Limin Wang, Dahua Lin+, Yu Qiao+, Ziwei Liu+

Paper Project Page HuggingFace Video Visitor

Installation

pip install vbench

To evaluate some video generation ability aspects, you need to install detectron2 via:

pip install detectron2@git+https://github.com/facebookresearch/detectron2.git

If there is an error during detectron2 installation, see here.

Usage

Evaluate Your Own Videos

We support evaluating any video. Simply provide the path to the video file, or the path to the folder that contains your videos. There is no requirement on the videos' names.

  • Note: We support customized videos / prompts for the following dimensions: 'subject_consistency', 'background_consistency', 'motion_smoothness', 'dynamic_degree', 'aesthetic_quality', 'imaging_quality'

To evaluate videos with customed input prompt, run our script with --mode=custom_input:

python evaluate.py \
    --dimension $DIMENSION \
    --videos_path /path/to/folder_or_video/ \
    --mode=custom_input

alternatively you can use our command:

vbench evaluate \
    --dimension $DIMENSION \
    --videos_path /path/to/folder_or_video/ \
    --mode=custom_input

Evaluation on the Standard Prompt Suite of VBench

command line
    vbench evaluate --videos_path $VIDEO_PATH --dimension $DIMENSION

For example:

    vbench evaluate --videos_path "sampled_videos/lavie/human_action" --dimension "human_action"
python
    from vbench import VBench
    my_VBench = VBench(device, <path/to/VBench_full_info.json>, <path/to/save/dir>)
    my_VBench.evaluate(
        videos_path = <video_path>,
        name = <name>,
        dimension_list = [<dimension>, <dimension>, ...],
    )

For example:

    from vbench import VBench
    my_VBench = VBench(device, "vbench/VBench_full_info.json", "evaluation_results")
    my_VBench.evaluate(
        videos_path = "sampled_videos/lavie/human_action",
        name = "lavie_human_action",
        dimension_list = ["human_action"],
    )

Evaluation on a specific category from VBench

command line
vbench evaluate \
    --videos_path $VIDEO_PATH \
    --dimension $DIMENSION \
    --mode=vbench_category \
    --category=$CATEGORY

or

python evaluate.py \
    --dimension $DIMENSION \
    --videos_path /path/to/folder_or_video/ \
    --mode=vbench_category

Prompt Suite

We provide prompt lists are at prompts/.

Check out details of prompt suites, and instructions for how to sample videos for evaluation.

Citation

If you find this package useful for your reports or publications, please consider citing the VBench paper:

 @article{huang2023vbench,
     title={{VBench}: Comprehensive Benchmark Suite for Video Generative Models},
     author={Huang, Ziqi and He, Yinan and Yu, Jiashuo and Zhang, Fan and Si, Chenyang and Jiang, Yuming and Zhang, Yuanhan and Wu, Tianxing and Jin, Qingyang and Chanpaisit, Nattapol and Wang, Yaohui and Chen, Xinyuan and Wang, Limin and Lin, Dahua and Qiao, Yu and Liu, Ziwei},
     journal={arXiv preprint arXiv:2311.17982},
     year={2023}
 }

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vbench-0.1.4.tar.gz (331.2 kB view details)

Uploaded Source

Built Distribution

vbench-0.1.4-py3-none-any.whl (438.0 kB view details)

Uploaded Python 3

File details

Details for the file vbench-0.1.4.tar.gz.

File metadata

  • Download URL: vbench-0.1.4.tar.gz
  • Upload date:
  • Size: 331.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.19

File hashes

Hashes for vbench-0.1.4.tar.gz
Algorithm Hash digest
SHA256 034dc1e0055fb4313362ded9633a88ef251dceff7b077ab712fb17b6b387f1e9
MD5 77db576b0b1723e3cacef15a5189007f
BLAKE2b-256 1287481cd3d15f992a6c9f42959bd1b9b782257d706a6a7c94acc29df1422f4e

See more details on using hashes here.

File details

Details for the file vbench-0.1.4-py3-none-any.whl.

File metadata

  • Download URL: vbench-0.1.4-py3-none-any.whl
  • Upload date:
  • Size: 438.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.19

File hashes

Hashes for vbench-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 6e12b954b407aa97f3e8a91ada33f6f44b69fc43368ce70854cc8472cd1eb38e
MD5 e5b5b0136e9c53286d688b5bc109179d
BLAKE2b-256 4d2927c4b602f5d2c2d87ea7f60ac292d9ab95c2ad4892bf3ca9b144fa873e98

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page