Skip to main content

Video generation benchmark

Project description

vbench_logo

VBench is a comprehensive benchmark suite for video generative models. You can use VBench to evaluate video generation models from 16 different ability aspects.

This project is the PyPI implementation of the following research:

VBench: Comprehensive Benchmark Suite for Video Generative Models
Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing Wu, Qingyang Jin, Nattapol Chanpaisit, Yaohui Wang, Xinyuan Chen, Limin Wang, Dahua Lin+, Yu Qiao+, Ziwei Liu+

Paper Project Page HuggingFace Video Visitor

Installation

pip install vbench

To evaluate some video generation ability aspects, you need to install detectron2 via:

pip install detectron2@git+https://github.com/facebookresearch/detectron2.git

If there is an error during detectron2 installation, see here.

Usage

Evaluate Your Own Videos

We support evaluating any video. Simply provide the path to the video file, or the path to the folder that contains your videos. There is no requirement on the videos' names.

  • Note: We support customized videos / prompts for the following dimensions: 'subject_consistency', 'background_consistency', 'motion_smoothness', 'dynamic_degree', 'aesthetic_quality', 'imaging_quality'

To evaluate videos with customed input prompt, run our script with --mode=custom_input:

python evaluate.py \
    --dimension $DIMENSION \
    --videos_path /path/to/folder_or_video/ \
    --mode=custom_input

alternatively you can use our command:

vbench evaluate \
    --dimension $DIMENSION \
    --videos_path /path/to/folder_or_video/ \
    --mode=custom_input

Evaluation on the Standard Prompt Suite of VBench

command line
    vbench evaluate --videos_path $VIDEO_PATH --dimension $DIMENSION

For example:

    vbench evaluate --videos_path "sampled_videos/lavie/human_action" --dimension "human_action"
python
    from vbench import VBench
    my_VBench = VBench(device, <path/to/VBench_full_info.json>, <path/to/save/dir>)
    my_VBench.evaluate(
        videos_path = <video_path>,
        name = <name>,
        dimension_list = [<dimension>, <dimension>, ...],
    )

For example:

    from vbench import VBench
    my_VBench = VBench(device, "vbench/VBench_full_info.json", "evaluation_results")
    my_VBench.evaluate(
        videos_path = "sampled_videos/lavie/human_action",
        name = "lavie_human_action",
        dimension_list = ["human_action"],
    )

Evaluation on a specific category from VBench

command line
vbench evaluate \
    --videos_path $VIDEO_PATH \
    --dimension $DIMENSION \
    --mode=vbench_category \
    --category=$CATEGORY

or

python evaluate.py \
    --dimension $DIMENSION \
    --videos_path /path/to/folder_or_video/ \
    --mode=vbench_category

Prompt Suite

We provide prompt lists are at prompts/.

Check out details of prompt suites, and instructions for how to sample videos for evaluation.

Citation

If you find this package useful for your reports or publications, please consider citing the VBench paper:

 @article{huang2023vbench,
     title={{VBench}: Comprehensive Benchmark Suite for Video Generative Models},
     author={Huang, Ziqi and He, Yinan and Yu, Jiashuo and Zhang, Fan and Si, Chenyang and Jiang, Yuming and Zhang, Yuanhan and Wu, Tianxing and Jin, Qingyang and Chanpaisit, Nattapol and Wang, Yaohui and Chen, Xinyuan and Wang, Limin and Lin, Dahua and Qiao, Yu and Liu, Ziwei},
     journal={arXiv preprint arXiv:2311.17982},
     year={2023}
 }

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vbench-0.1.2.tar.gz (312.9 kB view details)

Uploaded Source

Built Distribution

vbench-0.1.2-py3-none-any.whl (447.1 kB view details)

Uploaded Python 3

File details

Details for the file vbench-0.1.2.tar.gz.

File metadata

  • Download URL: vbench-0.1.2.tar.gz
  • Upload date:
  • Size: 312.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.19

File hashes

Hashes for vbench-0.1.2.tar.gz
Algorithm Hash digest
SHA256 1c6f3914da43ff89072aac0f0bc42753195ccd53c41e954f4e2826b8915f1da9
MD5 a283b50164a71813bd7f6fa55dbc646e
BLAKE2b-256 92fdf690d1a23e1e385170f53f5c77e96f6bda2fead4a871270fa8718ddd2a0c

See more details on using hashes here.

File details

Details for the file vbench-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: vbench-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 447.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.19

File hashes

Hashes for vbench-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 c671adffe3564da4af0640d79ac71da30e1cc257944329b4806ef7baf2d0c1ac
MD5 037695f86f9cc38e616f76d94c19f681
BLAKE2b-256 ec7bb3e1594539b6e3594d6a0112c2b2d72daf6e26430ed16d8e561676f7ed49

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page