Skip to main content

Variational Bayesian Mixture of Factor Analysers

Project description

Variational Bayesian Mixture of Factor Analysers for dimensionality reduction and clustering.

Factor analysis (FA) is a method for dimensionality reduction, similar to principle component analysis (PCA), singular value decomposition (SVD), or independent component analysis (ICA). Applications include visualization, image compression, or feature learning. A mixture of factor analysers consists of several factor analysers, and allows both dimensionality reduction and clustering. Variational Bayesian learning of model parameters prevents overfitting compared with maximum likelihood methods such as expectation maximization (EM), and allows to learn the dimensionality of the lower dimensional subspace by automatic relevance determination (ARD). A detailed explanation of the model can be found here.

Note

The current version is still under development, and needs to be optimized for large-scale data sets. I am open for any suggestions, and happy about every bug report!

Installation

The easiest way to install vbmfa is to use PyPI:

pip install vbmfa

Alternatively, you can checkout the repository from Github:

git clone https://github.com/cangermueller/vbmfa.git

Examples

The folder examples/ contains example ipython notebooks:

  • VbFa, a single Variational Bayesian Factor Analyser
  • VbMfa, a mixture of Variational Bayesian Factors Analysers

Contact

Christof Angermueller

https://github.com/cangermueller

Project details


Release history Release notifications

This version
History Node

0.0.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
vbmfa-0.0.1.macosx-10.9-x86_64.tar.gz (17.9 kB) Copy SHA256 hash SHA256 Dumb Binary any Oct 5, 2014
vbmfa-0.0.1.tar.gz (33.2 kB) Copy SHA256 hash SHA256 Source None Oct 5, 2014

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page