VCF to MAF format converter
Project description
vcf2maf_lite
vcf2maf_lite is a lightweight Python adaptation of the vcf2maf Perl tool, designed to convert the VCF format to MAF format without adding variant annotations. For annotating a MAF file, Genome Nexus can be utilized.
Installation using pip
pip3 install vcf2maf_lite
Usage:
vcf2maf_lite --help
Usage: vcf2maf_lite [OPTIONS]
Options:
-i, --input-data TEXT A list of .vcf files or input data directories,
separated by commas [required]
-o, --output-directory TEXT output data directory [optional]
-c, --center TEXT name of center (standard MAF field = 'Center')
[optional]
-s, --sequence-source TEXT Sequencing source (standard MAF field =
'Sequencing_Source'), e.g., WXS or WGS
[optional]
-t, --tumor-id TEXT The ID of the tumor sample utilized in the
genotype columns of the VCF file. [optional]
-n, --normal-id TEXT The ID of the normal sample utilized in the
genotype columns of the VCF file. [optional]
-a, --retain-info TEXT Comma-delimited names of INFO fields to retain
as extra columns in MAF [optional]
-f, --retain-fmt TEXT Comma-delimited names of FORMAT fields to
retain as extra columns in MAF [optional]
--help Show this message and exit.
Example Usage:
vcf2maf_lite --input-data /data/vcf --output-directory /data/maf/ --center CTR --sequence-source WGS --tumor-id Tumor --normal-id Normal --retain-info Custom_filters,AC,AF,AC_nfe_seu,AC_afr,AF_afr --retain-fmt alt_count_raw,ref_count_raw,depth_raw
This command converts the VCF files in /vcf folder to MAF format.
- The
--input-data
option is used to specify either a single VCF file or a directory containing multiple VCF files (separated by commas). This option supports passing multiple input files or directories at once. - The
--output-directory
option allows you to specify the directory where the MAF files will be saved. If no output path is provided, the default output directoryvcf2maf_output
will be used in the current working directory. - The
--tumor-id
option allows you to specify the ID of the tumor sample used in the genotype columns of the VCF file. If the option is not used, the script will automatically identify the tumor ID from either thetumor_sample
keyword in the meta data lines or the sample columns from VCF header. - The
--normal-id
option allows you to specify the ID of the normal sample used in the genotype columns of the VCF file. If the option is not used, the script will automatically identify the normal ID from either thenormal_sample
keyword in the meta data lines or the sample columns from VCF header. - The
--retain-info
option allows you to specify the INFO fields to be retained as additional columns in the MAF. If the option is not used, standard MAF columns are included by default. - The
--retain-fmt
option allows you to specify the FORMAT fields to be retained as additional columns in the MAF. If the option is not used, standard MAF columns are included by default.
Importing to Python Scripts:
from vcf2maf_lite.vcf2maf_lite import main
from click.testing import CliRunner
runner = CliRunner()
runner.invoke(main, ['--input-data','test_vcf.vcf'])
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
vcf2maf_lite-0.1.1.tar.gz
(18.3 kB
view details)
Built Distribution
File details
Details for the file vcf2maf_lite-0.1.1.tar.gz
.
File metadata
- Download URL: vcf2maf_lite-0.1.1.tar.gz
- Upload date:
- Size: 18.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 105aa4fa45e3585f72e92cf6a3d905c06b34d3744bace407ab870869badc045a |
|
MD5 | ab7eb1315de735e292d221e8c6859955 |
|
BLAKE2b-256 | 68bca46dd228ced766a492713370a0415ee6293edf0919c0c65b26efda95c6cf |
File details
Details for the file vcf2maf_lite-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: vcf2maf_lite-0.1.1-py3-none-any.whl
- Upload date:
- Size: 18.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 79ed99e0285dda9fe039a3b5a7572ff4d3987576a75fe7c6a4dd2ea41e2f8e38 |
|
MD5 | e9025a7de227c553e16451ba3824f761 |
|
BLAKE2b-256 | f6afbdb1bd7b0b6f7e586c8feed7f5099317438eaf8a31f137a2e5a091448895 |