A simple vector database allows difference search methods (consine similarity and euclidean distance ect.)
Project description
VDBpy
A simple vector database allows difference search methods (consine similarity and euclidean distance ect.)
Usage
View example.py for details
from VDBpy.indexing import VectorIndex
from VDBpy.query import VectorQuery
# Create a new vector index
index = VectorIndex()
# Add some vectors to the index
index.add_vector([1, 2, 3], 'vector1')
index.add_vector([4, 5, 6], 'vector2')
# Create a new vector query
query = VectorQuery(index)
# Execute the query
results = query.execute([2, 2, 2], k=2)
'''
# Execute the query using cosine similarity
results = query.execute([2,2,2], k=2, metric='cosine')
# Execute the query using Manhattan distance
results = query.execute([2,2,2], k=2, metric='manhattan')
# Execute the query using Jaccard similarity
results = query.execute([2,2,2], k=2, metric='jaccard')
'''
# Print the results
for id, similarity in results:
print(f"ID: {id}, Similarity: {similarity}")
Installation
pip install VDBpy
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
VDBpy-0.1.4.tar.gz
(2.6 kB
view details)
Built Distribution
VDBpy-0.1.4-py3-none-any.whl
(3.2 kB
view details)
File details
Details for the file VDBpy-0.1.4.tar.gz
.
File metadata
- Download URL: VDBpy-0.1.4.tar.gz
- Upload date:
- Size: 2.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cf8f2440e839ebdd4a96419288e09e166f7783d94f7cbda090aaed466c35663f |
|
MD5 | 5f660276a3296248fcabe79621369f31 |
|
BLAKE2b-256 | 4b791326135ac143e5410ca3fb79111e6e7677cfd52d4cc2febd82eff85cd0e0 |
File details
Details for the file VDBpy-0.1.4-py3-none-any.whl
.
File metadata
- Download URL: VDBpy-0.1.4-py3-none-any.whl
- Upload date:
- Size: 3.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 96135696274cdb976b81f8837c89db8331b94c8e63a7e8078318286faccecca2 |
|
MD5 | d1c04e0a69034ff79bfa91d2e25a79b0 |
|
BLAKE2b-256 | 571251556c3cab58050645f6f6ad8d3c7b1d352b38e1a93c20fde200b30c5063 |