Skip to main content

VanderSat API client package

Project description

(Command line) interface to download data batches directly from the VanderSat API

Description

Using this module, one can get data from the VanderSat API using either:

  • Command line
  • Python console

Compatible for Linux, Mac and Windows Python >3.6

This package offers an easy interface to the asynchronous endpoints offered by the VanderSat API. However, not all available endpoints can be accessed through this package.

Required packages

  • click
  • requests
  • pandas
  • click_datetime
  • joblib

Setting up an environment

If you don’t have an environment yet or would like a new one, use the following line to make a new one using conda

$ conda create -n vds_api -c conda-forge python=3 requests "click>=7" pandas joblib pip

activate it

$ conda activate vds_api

and follow the installation steps

Installation

The package can be installed directly from PyPI. Activate your environment and then install with

$ pip install vds_api_client

With this activated environment one can access the vds cli with

$ vds-api

(If not, your installation did not succeed)

Available CLI commands

$ vds-api

will show all available commands which should include:

  • grid - download gridded data
  • info - Show info for this account
  • test - test connection, credentials and if api is operational
  • ts - download time-series as csv over points or rois

Calling any of these commands should be done after suppliying credentials:

$ vds api -u [username] -p [password] [command]

And it is always a good idea to start with a test:

$ vds-api -u [username] -p [password] test

Credentials

For each api call using the cli, the credentials need to be supplied. These can be parsed along with the call by typing them explicitly like:

$ vds-api -u [username] -p [password] [command]

However, it is also convenient to store the credentials so they don’t have to be typed each time. Set the environment variables $VDS_USER and $VDS_PASS with the correct values to automatically fill in your credentials.

Note

From this point on, the credentials don’t have to be parsed explicitly anymore thus the syntax reduces to:

$ vds-api [command]

Impersonation

If a user manages another VanderSat API user account, it can impersonate this user. Through the CLI this can also be done using the --impersonate flag. e.g.

$ vds-api -u manager@company.com -p password --impersonate "user@company.com" [command]

or when credentials were stored already

$ vds-api --impersonate "user@company.com" [command]

Command specifications: info

Get a summary of all user information. The shown information contains the following:

  • registred user information (name, email, role, etc)
  • registred products (api-name | product-name)
  • roi information

All info is shown by default but it is also possible to only show part of it with the following options:

-u, --user show user info
-p, --product_list
 show product-list
-r, --roi show roi info

E.g. to show all available products, type:

$ vds-api info -p

Command specifications: grid

Get one or multiple gridded data files in GeoTIFF or NetCDF.

See all available options by typing:

$ vds-api grid --help

Required options:

-p, --product str // Product api-Name to download, you can specify multiple products by repeating the -p flag
-lo, --lon_range
 float float // Range of longitudes, -lo min max
-la, --lat_range
 float float // Range of latitudes, -la min max
-dr, --date_range
 yyyy-mm-dd yyyy-mm-dd // date range to download separated by a space

Optional options:

-f, --format [gtiff|netcdf4] // File format to download, defaults to gtiff
-n, --n_proc int // Number of simultaneous calls to the server (default 4, pref <= 8)
-o, --outfold str // Path to output the data to (created if it does not exist)
-v, --verbose Switch to increase the output messages
-c, --config_file
 str // Path to condiguration file containing pre-defined parameters
-z, --zipped Switch to request the data zipped (if n_procs > 1, multiple zip files will be received)

Command specifications: ts

Get one or multiple csv files with time-series.

See all available options by typing:

$ vds-api ts --help

Required options:

-p, --product str // Product api-Name to download, you can specify multiple products by repeating the -p flag
-dr, --date_range
 yyyy-mm-dd yyyy-mm-dd // date range to download separated by a space

At least one of the following (yet multiple allowed):

-ll, --latlon float float // Latitude-Longitude pair to extract ts, can be multiple by repeating -ll
-r, --roi int // Region of interest id that can be referenced at maps.vandersat.com. Repeat -r for multiple

Optional options:

-f, --format [csv|json] // File format to download, defaults to csv
--masked Switch to also download flagged data
--av_win int // Add averaging +/- days window column to output (supply full window)
--clim Switch to include climatology column in output
-t int // Rootzone soil moisture parameter (days) (not used with streaming)
-v, --verbose Switch to increase the output messages
-c, --config_file
 text // Path to condiguration file containing pre-defined parameters
-o, --outfold str // Path to output the data to (created if it does not exist)

V2 CLI Examples

Example usage CLI V2 grid

Get L-band for one month over NL in geotiff with 8 threads

$ vds-api grid -p SM-SMAP-LN-DESC_V003_100 -dr 2015-04-01 2015-04-30 -lo 3 8 -la 50 54 -o SM_L_Data -n 8 -v

Get L+C+X-band for two dates over NL in netcdf

$ vds-api grid -p SM-SMAP-LN-DESC_V003_100 -p SM-AMSR2-C1N-DESC_V003_100 -p SM-AMSR2-XN_V003_100 -f netcdf4 -dr 2016-07-01 2016-07-02 -lo 3.0 8.0 -la 50.0 54.0 -o NCData -v

Example usage CLI V2 ts

Get L-band time-series for a region-of-interest (roi) and a lat-lon pair

$ vds-api ts -p SM-SMAP-LN-DESC_V003_100 -dr 2015-05-01 2020-01-01 -ll 52 4.5 -r 3249 -o tsfold -v

Get time-series with all additional columns

$ vds-api ts -p SM-SMAP-LN-DESC_V003_100 -dr 2015-04-01 2019-01-01 -ll 52 4.5 -o tsfold --masked --av_win 35 --clim -t 20 -v

Example usage Python API

Asynchronous requests can easily be downloaded using the VdsApiV2 class. For downloading of the desired files, the following steps need to be taken:

API v2

For the version 2 api, three steps have to be taken to download data from the api which are all methods of the VdsApiV2 class:
  1. Generate a request
    Configure gridded data download or time-series download through one of gen_time_series_requests() or gen_gridded_data_request()
  2. Submit request
    After generating all desired URIs, submit these with submit_async_requests() to start the processing of these jobs
  3. Download files
    Get all data using download_async_files()

Initialize class

from vds_api_client import VdsApiV2

# Choose one of the following options to initialize
vds = VdsApiV2('username', 'password')
vds = VdsApiV2()  # extract login from $VDS_USER and $VDS_PASS

Impersonate user

When a user manages another account, it can impersonate this managed acount which means that all requests will be done as if the impersonated user has made them

vds = VdsApiV2('manager@company.com', 'password')

# Start impersonation
vds.impersonate('user@company.com')

# do_requests

# End impersonation
vds.forget()

Gridded data example [asynchronous]

Request raster data using the products/<api_name>/gridded-data endpoint

from vds_api_client import VdsApiV2

vds = VdsApiV2()

vds.set_outfold('testdata/tiff')  # Created if it does not exist
vds.gen_gridded_data_request(products=['SM-SMAP-LN-DESC_V003_100', 'SM-AMSR2-XN-DESC_V003_100'],
                             start_date='2015-10-01', end_date='2016-09-30',
                             lat_min=-3.15, lat_max=-1.5, lon_min=105, lon_max=107,
                             nrequests=4)
vds.submit_async_requests()
vds.download_async_files()

# Get information on the downloaded files
vds.summary()

Time-series example [asynchronous]

Request time-series data using the products/<api_name>/[point|roi]-time-series endpoints

from vds_api_client import VdsApiV2
vds = VdsApiV2()

vds.set_outfold('testdata/csv')  # Created if it does not exist
vds.gen_time_series_requests(products=['SM-XN_V001_100'],
                             start_time='2018-01-01', end_time='2018-01-03',
                             lons=[6.5], lats=[41.5], rois=[527, 811])
vds.submit_asynch_requests()
vds.download_async_files()

# Get information on the downloaded files
vds.summary()

Re-download previous requests

Re-download data using previously generated uuids. Note that data is not stored indefinitely, but within 7 days you should be able to re-download your data.

from vds_api_client import VdsApiV2
vds = VdsApiV2()

# Choose from
vds.uuids.append('5742540a-cf87-49dd-a6e7-d484de137324')
vds.queue_uuids_files()
# or
vds.queue_uuids_files(uuids=['57f9950a-4e41-49dd-a6e7-d484de137324'])

Get a single point value

Extract a single value based on a product-coordinate using the products/<api-name>/point-value endpoint

from vds_api_client import VdsApiV2

vds = VdsApiV2()

# Load using the roi-id
val = vds.get_value('SM-XN_V001_100', '2020-04-01', lon=20.6, 40.4)

Load Roi time-series as pandas dataframe [synchronous]

Request roi time-series data using the products/<api_name>/roi-time-series-sync endpoint and load the result as a pandas.DataFrame

from vds_api_client import VdsApiV2

vds = VdsApiV2()

# Load using the roi-id
df1 = vds.get_roi_df('SM-XN_V001_100', 2464, '2016-01-01', '2018-12-31')

# Load using the roi-name
df2 = vds.get_roi_df('SM-XN_V001_100', 'MyArea', '2016-01-01', '2018-12-31')

ROIS

Knowing and using the regions of interest (rois) attached to your account is now easier using the client methods that allow you to filter the rois.

from vds_api_client import VdsApiV2

vds = VdsApiV2()

print(vds.rois)
 # ID # |       # Name #       |   # Area #   |       # Description #
============================================================================
   3249 | GH                   | 3.227e+04 ha | Groene hart cirkel
   3970 | Luxemburg            | 2.593e+05 ha | Administrative Country Boundary
   7046 | Ernange              | 7.244e+02 ha | Ernange area for Kisters / SPW
   9211 | Delete This          | 4.128e+04 ha | Selection to Delete
   9212 | Delete also this one | 7.387e+04 ha | Selection to Delete

But now, also filters can be applied to select Rois based on a criterium, and give the corresponding ids:

rois_filtered = vds.rois.filter(min_id=100,
                                area_min=200,
                                description_regex='Delete')
print(rois_filtered)
print(rois_filtered.ids_to_list())
# ID # |       # Name #       |   # Area #   |       # Description #
============================================================================
  9211 | Delete This          | 4.128e+04 ha | Selection to Delete
  9212 | Delete also this one | 7.387e+04 ha | Selection to Delete

[9211, 9212]

Deleting ROIS from your account is supported through the delete_rois_from_account() method. It expects a list of integers, or a filtered Rois instance. Now we can delete our Rois quite easily like:

vds.delete_rois_from_account(vds.rois.filter(description_regex='Selection to Delete'))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for vds-api-client, version 2.0.0
Filename, size File type Python version Upload date Hashes
Filename, size vds_api_client-2.0.0.tar.gz (37.7 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page