Skip to main content

A library for efficient similarity search and storage of deep learning vectors.

Project description

Vearch is the vector search infrastructure for deeping learning and AI applications. The Python’s implementation allows vearch to be used locally.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

vearch-3.3.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (73.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

vearch-3.3.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (73.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

vearch-3.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (76.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

vearch-3.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (76.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

vearch-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (76.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

vearch-3.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (76.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

vearch-3.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (76.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

vearch-3.3.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (76.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

File details

Details for the file vearch-3.3.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vearch-3.3.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 405bc0ea5f17d9b40d3edac0030dc24515c2ca70f1d3fd45edd73bf71c1b785f
MD5 8a193195cfad35cbb17a0abc7ab11618
BLAKE2b-256 7bdc81ca360bed6f3137a5241b0e1fb3cf79d464d8b4492afd5c6867e9a8a355

See more details on using hashes here.

File details

Details for the file vearch-3.3.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vearch-3.3.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0f3e93a08aac6cb54efe8ce64c09fb246bfb1edcfc9fa5bbbd5e137a72791992
MD5 2e12007c941af0969def6be9dd7bdff1
BLAKE2b-256 6d97a1bdcebf6d93a238c0f50d8c177965c7ec52436b68f406b5da9834563b25

See more details on using hashes here.

File details

Details for the file vearch-3.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vearch-3.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 19a9cb93cdf9294d9ad160c748b18160026d8f08cde143e1e0ad46c334284b19
MD5 33614a92b86fed42b2fe64c3e5165816
BLAKE2b-256 ff33839deddf279b4c9b41cede5e1a7511bd36443a1d7b70705dd9a09478483d

See more details on using hashes here.

File details

Details for the file vearch-3.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vearch-3.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e6781e866517e98cc2aaea3728a832b041f647bb9892f1ec8af6a978e633e61f
MD5 b212ade5c415e4ab01fec0077dbbb230
BLAKE2b-256 f6bd41ba884629b99a1648de987e2dcba5df8c2aca73a6b17f26746ad345555f

See more details on using hashes here.

File details

Details for the file vearch-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vearch-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 41372be49ea1195b922f1c5c833825375d3cdd2117d740862add2e4e5ba81b3f
MD5 76a8c7546d87b30ca1bb9dc78256ab67
BLAKE2b-256 2b59e798844c4d572768486771a042bfd342c05c48acf8d34f5ef23cd5b4234e

See more details on using hashes here.

File details

Details for the file vearch-3.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vearch-3.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e784f1ddce92f5a5f44fdb991a80bd2dbdf6921660f71b6c353b3be2641eb2d5
MD5 5bd5b7c738d2e9759de5b4830ab8e857
BLAKE2b-256 32ca78991c8b8be1a9524701e675984a429e6388ab9b7b52e2a21caa30afee88

See more details on using hashes here.

File details

Details for the file vearch-3.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vearch-3.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c36604b2fa650585fcfc456391830e0e2ee41734301b308305b53c9147e73a1b
MD5 9496afde73f1e06821cfaf1bf747aea9
BLAKE2b-256 7d5d86e9762e03fd6b1b12ec12da139277c500536e4ee01b2efb4b8b780c5f80

See more details on using hashes here.

File details

Details for the file vearch-3.3.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for vearch-3.3.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3736faeb60a980a0b91ab936989bd5f07b7237e0cf3f910bdb428a9ca802f1c4
MD5 030652daee00a8e215b6291609deff13
BLAKE2b-256 b6a0dcb2e3a333a769d0e453afd77d893462419dc8a6d46bfd58124e118c4960

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page