Skip to main content

Vectorized functions for transforming latitude and longitude coordinates to Map Tile coordinates, Map Pixel coordinates or QuadKeys

Project description

Vec_GeoHash

Python License: MIT Tests Ruff

Short Description

Vectorized functions that allow efficient transformation of latitude and longitude coordinates into Map Tile coordinates, Map Pixel coordinates or QuadKeys. This can be particularly useful in (GIS) geographic information systems and mapping applications. By utilizing vectorized functions, transformation can be performed on large datasets, with minimal impact on performance. Additionally, only using numpy as dependency these functions can be easily incorporated into existing code and workflows.

Instalation

The project can be installed using `pip`:

pip install vec_geohash

To install from this repo:

git clone https://github.com/FJakovljevic/vec_geohash.git
cd vec_geohash
pip install -e .

Usage

Vector example

import vec_geohash

lat_vector = [53.1231276599, 41.85]
lon_vector = [82.6978699112, -87.65]
zoom = 9

# getting tiles as [tile_x] vector and [tile_y] vector
vec_geohash.lat_lon_to_tile(lat_vector, lon_vector, zoom)
>>> (array([373, 131]), array([166, 190]))

# getting tiles as [[tile_x, tile_y]] vector
vec_geohash.lat_lon_to_tile(lat_vector, lon_vector, zoom)
>>> array([[373, 166],
           [131, 190]])

# getting quadkey
vec_geohash.lat_lon_to_quadkey(lat_vector, lon_vector, zoom)
>>> array(['121310321', '030222231'], dtype='<U9')

# getting pixels as [pixel_x] vector and [pixel_y] vector
vec_geohash.lat_lon_to_pixel(lat_vector, lon_vector, zoom)
>>> (array([95645, 33623]), array([42622, 48729]))

# getting pixels as [[pixel_x, pixel_y]] vector
vec_geohash.lat_lon_to_pixel(lat_vector, lon_vector, zoom)
>>> array([[95645, 42622],
           [33623, 48729]])

Scalar example

import vec_geohash

lat = 53.1231276599
lon = 82.6978699112
zoom = 9

# getting tiles 
vec_geohash.lat_lon_to_tile(lat, lon, zoom)
>>> (373, 166)

# getting quadkey
vec_geohash.lat_lon_to_quadkey(lat, lon, zoom)
>>> array(['121310321'], dtype='<U9')

# getting pixels
vec_geohash.lat_lon_to_pixel(lat, lon, zoom)
>>> (95645, 42622)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vec_geohash-0.0.3.tar.gz (10.3 kB view details)

Uploaded Source

Built Distribution

vec_geohash-0.0.3-py3-none-any.whl (7.0 kB view details)

Uploaded Python 3

File details

Details for the file vec_geohash-0.0.3.tar.gz.

File metadata

  • Download URL: vec_geohash-0.0.3.tar.gz
  • Upload date:
  • Size: 10.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for vec_geohash-0.0.3.tar.gz
Algorithm Hash digest
SHA256 c728662ca3f8a89816d5484a54d4492da35351e2e8d91a622baab6118e6fc09a
MD5 d17fe646443703daa903cb2d69cf5886
BLAKE2b-256 70d0952fd268fb6a0d8d23cd1b2829dd60d2c9d9897c3f4b39bb7bd9ae3dfff9

See more details on using hashes here.

File details

Details for the file vec_geohash-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: vec_geohash-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 7.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for vec_geohash-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 caaea64f689b780f00358969507e97d2215200884c4b5000cbc7e65e0ad27ec0
MD5 3de2ff1d79c97f73897f43bddb985acf
BLAKE2b-256 ddb6245e81639a8e567913d2b9e8a5cc9bbbf998a8ea4d8fb1615ab59df3e3c5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page