Skip to main content

A Python package for offline access to Vega datasets

Project description

vega_datasets

build status github actions github actions code style black

A Python package for offline access to vega datasets.

This package has several goals:

  • Provide straightforward access in Python to the datasets made available at vega-datasets.
  • return the results in the form of a Pandas dataframe.
  • wherever dataset size and/or license constraints make it possible, bundle the dataset with the package so that datasets can be loaded in the absence of a web connection.

Currently the package bundles a half-dozen datasets, and falls back to using HTTP requests for the others.

Installation

vega_datasets is compatible with Python 3.5 or newer. Install with:

$ pip install vega_datasets

Usage

The main object in this library is data:

>>> from vega_datasets import data

It contains attributes that access all available datasets, locally if available. For example, here is the well-known iris dataset:

>>> df = data.iris()
>>> df.head()
   petalLength  petalWidth  sepalLength  sepalWidth species
0          1.4         0.2          5.1         3.5  setosa
1          1.4         0.2          4.9         3.0  setosa
2          1.3         0.2          4.7         3.2  setosa
3          1.5         0.2          4.6         3.1  setosa
4          1.4         0.2          5.0         3.6  setosa

If you're curious about the source data, you can access the URL for any of the available datasets:

>>> data.iris.url
'https://cdn.jsdelivr.net/npm/vega-datasets@v1.29.0/data/iris.json'

For datasets bundled with the package, you can also find their location on disk:

>>> data.iris.filepath
'/lib/python3.6/site-packages/vega_datasets/data/iris.json'

Available Datasets

To list all the available datsets, use list_datasets:

>>> data.list_datasets()
['7zip', 'airports', 'anscombe', 'barley', 'birdstrikes', 'budget', 'budgets', 'burtin', 'cars', 'climate', 'co2-concentration', 'countries', 'crimea', 'disasters', 'driving', 'earthquakes', 'ffox', 'flare', 'flare-dependencies', 'flights-10k', 'flights-200k', 'flights-20k', 'flights-2k', 'flights-3m', 'flights-5k', 'flights-airport', 'gapminder', 'gapminder-health-income', 'gimp', 'github', 'graticule', 'income', 'iris', 'jobs', 'londonBoroughs', 'londonCentroids', 'londonTubeLines', 'lookup_groups', 'lookup_people', 'miserables', 'monarchs', 'movies', 'normal-2d', 'obesity', 'points', 'population', 'population_engineers_hurricanes', 'seattle-temps', 'seattle-weather', 'sf-temps', 'sp500', 'stocks', 'udistrict', 'unemployment', 'unemployment-across-industries', 'us-10m', 'us-employment', 'us-state-capitals', 'weather', 'weball26', 'wheat', 'world-110m', 'zipcodes']

To list local datasets (i.e. those that are bundled with the package and can be used without a web connection), use the local_data object instead:

>>> from vega_datasets import local_data
>>> local_data.list_datasets()

['airports', 'anscombe', 'barley', 'burtin', 'cars', 'crimea', 'driving', 'iowa-electricity', 'iris', 'seattle-temps', 'seattle-weather', 'sf-temps', 'stocks', 'us-employment', "wheat"]

We plan to add more local datasets in the future, subject to size and licensing constraints. See the local datasets issue if you would like to help with this.

Dataset Information

If you want more information about any dataset, you can use the description property:

>>> data.iris.description
'This classic dataset contains lengths and widths of petals and sepals for 150 iris flowers, drawn from three species. It was introduced by R.A. Fisher in 1936 [1]_.'

This information is also part of the data.iris doc string. Descriptions are not yet included for all the datasets in the package; we hope to add more information on this in the future.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vega_datasets-0.9.0.tar.gz (215.0 kB view details)

Uploaded Source

Built Distribution

vega_datasets-0.9.0-py3-none-any.whl (210.8 kB view details)

Uploaded Python 3

File details

Details for the file vega_datasets-0.9.0.tar.gz.

File metadata

  • Download URL: vega_datasets-0.9.0.tar.gz
  • Upload date:
  • Size: 215.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.22.0 setuptools/41.0.0 requests-toolbelt/0.8.0 tqdm/4.42.1 CPython/3.6.10

File hashes

Hashes for vega_datasets-0.9.0.tar.gz
Algorithm Hash digest
SHA256 9dbe9834208e8ec32ab44970df315de9102861e4cda13d8e143aab7a80d93fc0
MD5 5a17b42f507880037f9b7040b75d2e19
BLAKE2b-256 8fa0ce608d9a5b82fce2ebaa2311136b1e1d1dc2807f501bbdfa56bd174fff76

See more details on using hashes here.

File details

Details for the file vega_datasets-0.9.0-py3-none-any.whl.

File metadata

  • Download URL: vega_datasets-0.9.0-py3-none-any.whl
  • Upload date:
  • Size: 210.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.22.0 setuptools/41.0.0 requests-toolbelt/0.8.0 tqdm/4.42.1 CPython/3.6.10

File hashes

Hashes for vega_datasets-0.9.0-py3-none-any.whl
Algorithm Hash digest
SHA256 3d7c63917be6ca9b154b565f4779a31fedce57b01b5b9d99d8a34a7608062a1d
MD5 f7752c8afa2243230549d7b8c8d2e6b0
BLAKE2b-256 e69fca52771fe972e0dcc5167fedb609940e01516066938ff2ee28b273ae4f29

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page