Skip to main content

Monte Carlo integration with Tensorflow

Project description

DOI cpc

Tests Documentation Status


VegasFlow is a Monte Carlo integration library written in Python and based on the TensorFlow framework. It is developed with a focus on speed and efficiency, enabling researchers to perform very expensive calculation as quick and easy as possible.

Some of the key features of VegasFlow are:

  • Integrates efficiently high dimensional functions on single (multi-threading) and multi CPU, single and multi GPU, many GPUs or clusters.

  • Compatible with Python, C, C++ or Fortran.

  • Implementation of different Monte Carlo algorithms.


The documentation for VegasFlow is available at


Anaconda-Server Badge AUR

The package can be installed with pip:

python3 -m pip install vegasflow

as well as conda, from the conda-forge channel:

conda install vegasflow -c conda-forge

If you prefer a manual installation you can clone the repository and run:

git clone
cd vegasflow
python install

or if you are planning to extend or develop the code just use:

python develop


A number of examples (basic integration, cuda, external tools integration) can be found in the examples folder. A more detailed description can be found in the documention.

Below you can find a minimal workflow for using the examples provided with VegasFlow:

Firstly, one can install any extra dependencies required by the examples using:

pip install .[examples]

Minimal Working Example

from vegasflow import vegas_wrapper
import tensorflow as tf

def integrand(x, **kwargs):
    """ Function:
       x_{1} * x_{2} ... * x_{n}
       x: array of dimension (events, n)
    return tf.reduce_prod(x, axis=1)

dimensions = 8
iterations = 5
events_per_iteration = int(1e5)
vegas_wrapper(integrand, dimensions, iterations, events_per_iteration, compilable=True)

Please feel free to open an issue if you would like some specific example or find any problems at all with the code or the documentation.

Citation policy

If you use the package please cite the following paper and zenodo references:

        author = "Carrazza, Stefano and Cruz-Martinez, Juan M.",
        title = "{VegasFlow: accelerating Monte Carlo simulation across multiple hardware platforms}",
        eprint = "2002.12921",
        archivePrefix = "arXiv",
        primaryClass = "physics.comp-ph",
        reportNumber = "TIF-UNIMI-2020-8",
        doi = "10.1016/j.cpc.2020.107376",
        journal = "Comput. Phys. Commun.",
        volume = "254",
        pages = "107376",
        year = "2020"

        author       = {Juan Cruz-Martinez and
                        Stefano Carrazza},
        title        = {N3PDF/vegasflow: vegasflow v1.0},
        month        = feb,
        year         = 2020,
        publisher    = {Zenodo},
        version      = {v1.0},
        doi          = {10.5281/zenodo.3691926},
        url          = {}

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vegasflow-1.3.0.tar.gz (32.3 kB view hashes)

Uploaded source

Built Distribution

vegasflow-1.3.0-py3-none-any.whl (35.1 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page