Skip to main content

Venra provides a simple, high-level api for vespa.ai.

Project description

venra

Project Status: WIP Tests Release PyPI version

Venra provides a simple, high-level api for vespa.ai.

Venra targets subsets of Vespa's query, document, and system apis. It aims to encapsulate the complexity of dealing with the Vespa http interfaces, response behaviors, and json responses for common client tasks.

Venra is well suited for web backends, command line tools, and enrichment programs which need to retrieve, process, and update documents.

import venra

qdata = {}
qdata["yql"] = "select * from sources awesome_docs;"
response = venra.query.search(qdata)

docs = venra.query.extract_docs(response)
for r, doc in enumerate(docs):
    print(f"rank: {r} >> {doc.some_id} title: {doc.title}")

Note: This library is under active development and the api is currently unstable.

Installation

$ pip install venra

Usage

Basic Query:

import venra

# Build query
qdata = {}
qdata["yql"] = "select * from sources baz;"

# Run query
response = venra.query.search(qdata)

# Extract results via helpers
metrics = venra.query.extract_metrics(response)
docs = venra.query.extract_docs(response)

User Query and Grouping:

from pprint import pprint

from venra import config as vconfig
from venra import query as vquery


# Configure
user_query = "machine learning"
vconfig.vespa_host_app = "http://localhost:8080"

# Build query including a grouping
qdata = {}
qdata["yql"] = "select post_id, post_date from sources baz where userQuery()"
qdata["yql"] += f" | all(group(time.date(post_date)) order(-max(post_date)) max(32) each(output(count())) as(day_counts) );"
qdata["hits"] = 10
qdata["timeout"] = "3300ms"
qdata["model.queryString"] = user_query
qdata["model.type"] = "weakAnd"
qdata["presentation.summary"] = "full"
qdata["presentation.timing"] = "true"

# Run query
response = vquery.search(qdata)

# Extract results via helpers
metrics = vquery.extract_metrics(response)
groups = vquery.extract_groups(response)
myfacet = vquery.extract_group_pairs(groups, "day_counts", "count()")
docs = vquery.extract_docs(response)

# Query results ready for use in app
pprint(metrics)
pprint(myfacet)
pprint(docs)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

venra-0.1.6.tar.gz (9.6 kB view hashes)

Uploaded Source

Built Distribution

venra-0.1.6-py3-none-any.whl (11.0 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page