Skip to main content

Easy make mini-languages to do python things.

Project description

verb

Easy make mini-languages to do python things.

To install: pip install verb

Do things like this:

from verb import mk_executer

func_of_key = {
    'plus': lambda x, y: x + y,
    'minus': lambda x, y: x - y,
}
execute = mk_executer(func_of_key)
execute('3 minus 2 plus 1')
## 2
execute('9 minus 6')
## 3

A quick intro to Command

Uses cases: In situations where you want to get some input from a user (from the web, in a command line, etc.) that specifies a computation to be carried out, you know (right) that you definitely shouldn't resort to using eval or exec. Because it's dangerous for everyone involved -- let's just not go there.

verb offers an alternative: Easily building minilanguages that will allow the user to only execute the functions you choose, through a vocabulary you choose, and everyone can go home (as) safe (as you allow).

In a nutshell, you make a key-to-func mapping (or use the default). This func_of_key mapping is what specifies your interpreter:

from verb import *
import operator as o

func_of_key = {  # Note: Order represents precedence!
    '-': o.sub,
    '+': o.add,
    '*': o.mul,
    '/': o.truediv,
}

Now you have a minilanguage! Out-of-the-box it will allow you to "speak it in string" or "speak it in json/dict", but you can extend to enable the language to be written in any container you want.

If you give it a "command string":

command_str = '1 + 2 - 3 * 4 / 8'
command = Command(command_str, func_of_key)

command_str = '1 + 2 - 3 * 4 / 8' command = Command(command_str, func_of_key)

It will use func_of_key to both parse it and replace the keys with an indication that the corresponding function should be called. command is a callable object, and when you call it, it executes it's instructions:

command()
1.5

It may be useful to see what the operation structure looks like

d = command.to_dict()
d
{'-': ({'+': (1, 2)}, {'*': (3, {'/': (4, 8)})})}
# Or if you read better with indents

from functools import partial
import json
from lined import Pipe

print_jdict = Pipe(partial(json.dumps, indent=2), print)  # Note: Only works if your dict is JSON-izable. 

print_jdict(d)
{
  "-": [
    {
      "+": [
        1,
        2
      ]
    },
    {
      "*": [
        3,
        {
          "/": [
            4,
            8
          ]
        }
      ]
    }
  ]
}

That same dict can be used as a parameter to make the same command

command = Command(d, func_of_key)
command()
1.5

Example: Table Selector Mini Language

import operator as o
from typing import Callable, Mapping
from functools import partial

import pandas as pd
from lined import Pipe
from verb import str_to_basic_pyobj, Command


dflt_func_of_key_for_table_selection = {  # Note: Order represents precedence!
    '&': o.__and__,
    '==': o.__eq__,
    '<=': o.__le__,
    '>=': o.__ge__,
    '<': o.__lt__,
    '>': o.__gt__,
}


def mk_table_selector(
    table: pd.DataFrame,
    func_of_key: Mapping[str, Callable] = dflt_func_of_key_for_table_selection
):

    def leaf_processor(x):
        x = str_to_basic_pyobj(x)
        if x in table:
            return table[x]
        return x

    run_command = Pipe(
        partial(
            Command.from_string,
            func_of_key=func_of_key,
            leaf_processor=leaf_processor
        ),
        lambda f: f(),
        lambda idx: table[idx],
    )

    return run_command
import pandas as pd

df = pd.DataFrame(
    [{'source': 'audio', 'bt': 5, 'tt': 7, 'annot': 'cat'},
     {'source': 'audio',
        'bt': 6,
        'tt': 9,
        'annot': 'dog',
        'comments': 'barks and chases cat away'},
        {'source': 'visual', 'bt': 5, 'tt': 8, 'annot': 'cat'},
        {'source': 'visual',
         'bt': 6,
         'tt': 15,
         'annot': 'dog',
         'comments': 'dog remains in view after bark ceases'}]
)
df
source bt tt annot comments
0 audio 5 7 cat NaN
1 audio 6 9 dog barks and chases cat away
2 visual 5 8 cat NaN
3 visual 6 15 dog dog remains in view after bark ceases
run_command = mk_table_selector(df)
run_command('source == audio')
source bt tt annot comments
0 audio 5 7 cat NaN
1 audio 6 9 dog barks and chases cat away
run_command('tt <= 8')
source bt tt annot comments
0 audio 5 7 cat NaN
2 visual 5 8 cat NaN
run_command('source == audio & tt <= 8')
source bt tt annot comments
0 audio 5 7 cat NaN

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

verb-0.1.13.tar.gz (13.2 kB view details)

Uploaded Source

File details

Details for the file verb-0.1.13.tar.gz.

File metadata

  • Download URL: verb-0.1.13.tar.gz
  • Upload date:
  • Size: 13.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.14

File hashes

Hashes for verb-0.1.13.tar.gz
Algorithm Hash digest
SHA256 28e3cfaf31de59ff81295e31950ff6cf927e22c073d931fb4c0c196a83f99bca
MD5 c66c2e12af158d1760513e6567694632
BLAKE2b-256 2cd6440b32bc83a9befe6d15fc955dca9fc61d96e4ba9203bc000198af60fa06

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page