verify YOLO data annotations
Project description
VerifyDataAnnotations
Overview
Verifyannotations is a Python package specifically designed to validate and annotate image data with bounding boxes using annotations provided in both YOLO and PASCAL VOC format text files. It serves as a tool for verifying the correctness of annotations and ensuring the integrity of datasets intended for use in computer vision tasks, especially those utilizing object detection frameworks.
Features
- Validates the structure of image and label directories.
- Checks if label files contain valid annotations in YOLO or PASCAL VOC format.
- Ensures that image files have the correct format.
- Annotates images with bounding boxes based on YOLO or PASCAL VOC label annotations.
- Saves annotated images to an output directory.
Installation
You can install VerifyDataAnnotations via pip:
pip install verifyannotations
Verifying Data Annotations in YOLO Format
Input Parameters
label_folder
: Path to the directory containing label files with annotations in YOLO format.raw_image_folder
: Path to the directory containing the raw image files.output_image_folder
: Path to the directory where annotated images will be saved.image_name_list_path
: Path to the text file listing the names of all images in the dataset.class_path
: Path to the text file containing the list of classes or labels used in the dataset.
Example
Suppose you have the following directory structure:
dataset/
│
├── labels/
│ ├── image1.txt
│ ├── image2.txt
│ └── ...
│
├── images/
│ ├── image1.bmp
│ ├── image2.bmp
│ └── ...
│
├── saved_annotations/
│
├── name_list.txt
└── classes.txt
The labels
directory contains text files with annotation data in YOLO format. The images
directory contains corresponding image files. saved_annotations
will store the annotated images.
Using VerifyDataAnnotations:
from verifyannotations import VerifyDataAnnotations
label_folder = "dataset/labels"
raw_image_folder = "dataset/images"
output_image_folder = "dataset/saved_annotations"
image_name_list_path = "dataset/name_list.txt"
class_path = "dataset/classes.txt"
verifier = VerifyDataAnnotations(
label_folder,
raw_image_folder,
output_image_folder,
image_name_list_path,
class_path,
)
verifier.verify_annotations()
This will validate the annotations, annotate the images with bounding boxes, and save the annotated images to the saved_annotations
directory.
Verifying Data Annotations in PASCAL VOC format
CASE 1
Suppose you have a dataset folder with the following structure:
dataset/
│
├── image1.jpg
├── image1.xml
├── image2.png
├── image2.xml
└── ...
The dataset
directory contains both the images and their corresponding annotations in PASCAL VOC format.
Input Parameters
dataset_folder
: Path to the directory containing both the images and their corresponding annotations in PASCAL VOC format.output_image_folder
: Path to the directory where annotated images will be saved.
Using VerifyDataAnnotationsPascalVOC:
from verifyannotations import VerifyDataAnnotationsPascalVOC
dataset_folder = "dataset"
output_image_folder = "dataset/saved_annotations"
verifier = VerifyDataAnnotationsPascalVOC(
dataset_folder,
output_image_folder,
)
verifier.verify_annotations()
This will validate the annotations, annotate the images with bounding boxes, and save the annotated images to the saved_annotations
directory with the same extension as the original images.
CASE 2
In case your PASCAL VOC dataset has the structure shown below,
├── annotations/
│ ├── image1.xml
│ ├── image2.xml
│ └── ...
│
├── images/
│ ├── image1.jpg
│ ├── image2.jpg
│ └── ...
You have separate directories for images images
and annotations
, then you can verify the PASCAL VOC annotations like this:
Input Parameters
image_folder
: Path to the directory containing the images.annotation_folder
Path to the directory containing annotations in PASCAL VOC format.output_image_folder
: Path to the directory where annotated images will be saved.
Using VerifyDataAnnotationsPascalVOC:
from verifyannotations import VerifyDataAnnotationsPascalVOCSeparatedFolders
image_folder = "imagefolder"
annotation_folder = "annotationfolder"
output_folder = "dataset/saved_annotations"
verifier = VerifyDataAnnotationsPascalVOCSeparatedFolders(image_folder, annotation_folder, output_folder)
verifier.verify_annotations()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file verifyannotations-1.0.tar.gz
.
File metadata
- Download URL: verifyannotations-1.0.tar.gz
- Upload date:
- Size: 7.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 883c36f801d3b0c2855607ab623869de18751312d3fa88084f221eee9149107b |
|
MD5 | c0637f163d2ef7b2c1024e37d9cb51e5 |
|
BLAKE2b-256 | 53369e6a66c13e16a897aa158b5d20a6df774a481140900139700c59289fe947 |
File details
Details for the file verifyannotations-1.0-py3-none-any.whl
.
File metadata
- Download URL: verifyannotations-1.0-py3-none-any.whl
- Upload date:
- Size: 7.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5ffc4ae0cbf2e9fd8f5418e48933fa73162ebdead2b1445354b1e96fbd288a8c |
|
MD5 | d6ca62ac23adb735d9e4b1dfe75e658c |
|
BLAKE2b-256 | eda3e80729ed8e3bcdddeebb101b07b701725a351f435a90e3e1026a454d5763 |