Skip to main content

verify YOLO data annotations

Project description

VerifyDataAnnotations

Overview

Verifyannotations is a Python package specifically designed to validate and annotate image data with bounding boxes using annotations provided in both YOLO and PASCAL VOC format text files. It serves as a tool for verifying the correctness of annotations and ensuring the integrity of datasets intended for use in computer vision tasks, especially those utilizing object detection frameworks.

Features

  • Validates the structure of image and label directories.
  • Checks if label files contain valid annotations in YOLO or PASCAL VOC format.
  • Ensures that image files have the correct format.
  • Annotates images with bounding boxes based on YOLO or PASCAL VOC label annotations.
  • Saves annotated images to an output directory.

Installation

You can install VerifyDataAnnotations via pip:

pip install verifyannotations

Verifying Data Annotations in YOLO Format

Input Parameters

  • label_folder: Path to the directory containing label files with annotations in YOLO format.
  • raw_image_folder: Path to the directory containing the raw image files.
  • output_image_folder: Path to the directory where annotated images will be saved.
  • image_name_list_path: Path to the text file listing the names of all images in the dataset.
  • class_path: Path to the text file containing the list of classes or labels used in the dataset.

Example

Suppose you have the following directory structure:

dataset/
│
├── labels/
│   ├── image1.txt
│   ├── image2.txt
│   └── ...
│
├── images/
│   ├── image1.bmp
│   ├── image2.bmp
│   └── ...
│
├── saved_annotations/
│
├── name_list.txt
└── classes.txt

The labels directory contains text files with annotation data in YOLO format. The images directory contains corresponding image files. saved_annotations will store the annotated images.

Using VerifyDataAnnotations:

from verifyannotations import VerifyDataAnnotations

label_folder = "dataset/labels"
raw_image_folder = "dataset/images"
output_image_folder = "dataset/saved_annotations"
image_name_list_path = "dataset/name_list.txt"
class_path = "dataset/classes.txt"

verifier = VerifyDataAnnotations(
    label_folder,
    raw_image_folder,
    output_image_folder,
    image_name_list_path,
    class_path,
)

verifier.verify_annotations()

This will validate the annotations, annotate the images with bounding boxes, and save the annotated images to the saved_annotations directory.

Verifying Data Annotations in PASCAL VOC format

CASE 1

Suppose you have a dataset folder with the following structure:

dataset/
│
├── image1.jpg
├── image1.xml
├── image2.png
├── image2.xml
└── ...

The dataset directory contains both the images and their corresponding annotations in PASCAL VOC format.

Input Parameters

  • dataset_folder: Path to the directory containing both the images and their corresponding annotations in PASCAL VOC format.
  • output_image_folder: Path to the directory where annotated images will be saved.

Using VerifyDataAnnotationsPascalVOC:

from verifyannotations import VerifyDataAnnotationsPascalVOC

dataset_folder = "dataset"
output_image_folder = "dataset/saved_annotations"

verifier = VerifyDataAnnotationsPascalVOC(
    dataset_folder,
    output_image_folder,
)

verifier.verify_annotations()

This will validate the annotations, annotate the images with bounding boxes, and save the annotated images to the saved_annotations directory with the same extension as the original images.

CASE 2

In case your PASCAL VOC dataset has the structure shown below,

├── annotations/
│   ├── image1.xml
│   ├── image2.xml
│   └── ...
│
├── images/
│   ├── image1.jpg
│   ├── image2.jpg
│   └── ...

You have separate directories for images images and annotations, then you can verify the PASCAL VOC annotations like this:

Input Parameters

  • image_folder: Path to the directory containing the images.
  • annotation_folder Path to the directory containing annotations in PASCAL VOC format.
  • output_image_folder: Path to the directory where annotated images will be saved.

Using VerifyDataAnnotationsPascalVOC:

from verifyannotations import VerifyDataAnnotationsPascalVOCSeparatedFolders

image_folder = "imagefolder"

annotation_folder = "annotationfolder"


output_folder = "dataset/saved_annotations"


verifier = VerifyDataAnnotationsPascalVOCSeparatedFolders(image_folder, annotation_folder, output_folder)
verifier.verify_annotations()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

verifyannotations-1.0.tar.gz (7.8 kB view details)

Uploaded Source

Built Distribution

verifyannotations-1.0-py3-none-any.whl (7.9 kB view details)

Uploaded Python 3

File details

Details for the file verifyannotations-1.0.tar.gz.

File metadata

  • Download URL: verifyannotations-1.0.tar.gz
  • Upload date:
  • Size: 7.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.12

File hashes

Hashes for verifyannotations-1.0.tar.gz
Algorithm Hash digest
SHA256 883c36f801d3b0c2855607ab623869de18751312d3fa88084f221eee9149107b
MD5 c0637f163d2ef7b2c1024e37d9cb51e5
BLAKE2b-256 53369e6a66c13e16a897aa158b5d20a6df774a481140900139700c59289fe947

See more details on using hashes here.

File details

Details for the file verifyannotations-1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for verifyannotations-1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 5ffc4ae0cbf2e9fd8f5418e48933fa73162ebdead2b1445354b1e96fbd288a8c
MD5 d6ca62ac23adb735d9e4b1dfe75e658c
BLAKE2b-256 eda3e80729ed8e3bcdddeebb101b07b701725a351f435a90e3e1026a454d5763

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page