DETACH (Device Temperature and Acceleration Change) algorithm for detecting non-wear from raw accelerometer data.
Project description
vertdetach
DETACH (Device Temperature and Acceleration Change) algorithm detects non-wear periods for body-worn accelerometers by integrating a ‘rate-of-change’ criterion for temperature into a combined temperature-acceleration algorithm.
Publication
Vert, A., Weber, K. S., Thai, V., Turner, E., Beyer, K. B., Cornish, B. F., Godkin, F. E., Wong, C., McIlroy, W. E., & Van Ooteghem, K. (2022). Detecting accelerometer non-wear periods using change in acceleration combined with rate-of-change in temperature. BMC Medical Research Methodology, 22. https://doi.org/10.1186/s12874-022-01633-6
Using the vertdetach Algorithm
The DETACH algorithm is stored as a function called vertdetach within the /src/vertdetach/vertdetach.py Python file.
The function itself is defined as follows
vertdetach(x_values, y_values, z_values, temperature_values, accel_freq=75,
temperature_freq=0.25, std_thresh_mg=8.0, low_temperature_cutoff=26, high_temperature_cutoff=30,
temp_dec_roc=-0.2, temp_inc_roc=0.1, num_axes=2, quiet=False)
Input Arguments
The input arguments and their definitions are listed in the table below:
Argument | Data Type | Optional (default value) or Required | Description |
---|---|---|---|
x_values | NumPy Array | Required | x-axis accelerometer values |
y_values | NumPy Array | Required | y-axis accelerometer values |
z_values | NumPy Array | Required | x-axis accelerometer values |
temperature_values | NumPy Array | Required | Temperature values |
accel_freq | float | Optional (75) | Frequency of the accelerometer in Hz |
temperature_freq | float | Optional (0.25) | Frequency of the temperature in Hz |
std_thresh_mg | float | Optional (8.0) | The value which the standard deviation (STD) of an axis in the window must be below to trigger non-wear |
low_temperature_cutoff | float | Optional (26.0) | Low temperature threshold for non-wear classification (see paper for more details) |
high_temperature_cutoff | float | Optional (30.0) | High temperature threshold for non-wear classification (see paper for more details) |
temp_dec_roc | float | Optional (-0.2) | Temperature decrease rate-of-change threshold for non-wear classification (see paper for more details) |
temp_inc_roc | float | Optional (0.1) | Temperature increase rate-of-change threshold for non-wear classification (see paper for more details) |
num_axes | int | Optional (2) | Number of axes that must be below the STD threshold to be considered non-wear |
quiet | bool | Optional (False) | Whether or not to quiet print statements. |
Returns
The algorithm returns a tuple with two objects:
- start_stop_df: A pandas DataFrame with the start and end datapoints of the non-wear bouts.
- vert_nonwear_array: A numpy array with the same length of the accelerometer data marked as either wear (0) or non-wear (1)
Example
Example python code to determine the percentage of non-wear time from
from src.vertdetach.vertdetach import vertdetach
import numpy as np
# Load Data
accelerometer_vals = np.load("path\to\raw\accelerometer.npy")
temperature_values = np.load("path\to\raw\temperature.npy")
x_values = accelerometer_vals[0]
y_values = accelerometer_vals[1]
z_values = accelerometer_vals[2]
# Define Frequencies
accel_freq = 75
temperature_freq = 0.25
# Calculate Non-wear
start_stop_df, nonwear_array = vertdetach(x_values = x_values, y_values = y_values, z_values = z_values,
temperature_values = temperature_values, accel_freq = accel_freq,
temperature_freq = temperature_freq)
# Analysis
total_wear_time = np.sum(nonwear_array)
pct_worn = total_wear_time/len(nonwear_array) * 100
print("The device was not worn %s percent of the time" % pct_worn)
Version/Changelog
v1.0.3
- loosen dependency requirements to minimum version instead of minor version
v1.0.2
Installation
To install the latest release of vertdetach directly from GitHub using pip, run the following line in terminal or console:
pip install git+https://github.com/nimbal/vertdetach
To install a specific release, insert @v#.#.#
after the repository name replacing with the tag associated with that
release. For example:
pip install git+https://github.com/nimbal/vertdetach@v1.0.0
Include vertdetach as Package Dependency
To include the latest release of vertdetach as a dependency in your Python package, include the following string within the list alongside your other dependencies:
install_requires=['vertdetach@git+https://github.com/nimbal/vertdetach@[version]']
To include a specific release, replace [version]
with the tag associated with that release.
vertdetach Package Dependencies
- numpy
- pandas
- scipy
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file vertdetach-1.0.2.tar.gz
.
File metadata
- Download URL: vertdetach-1.0.2.tar.gz
- Upload date:
- Size: 7.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.2.0 CPython/3.10.12 Linux/6.2.0-1012-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 27c36de922df815fd4d78bb609120d353c8a0ffd544aa33ae409fdc1ee49b82e |
|
MD5 | e048ea376ed28b71b13fd8c720823e5b |
|
BLAKE2b-256 | f5d57bf6f4e927592a3ed027bf9f87ce427594bbef3eea8aa43bc1070600ef11 |
File details
Details for the file vertdetach-1.0.2-py3-none-any.whl
.
File metadata
- Download URL: vertdetach-1.0.2-py3-none-any.whl
- Upload date:
- Size: 6.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.2.0 CPython/3.10.12 Linux/6.2.0-1012-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0ba6ff276e44cf5b64851940353fb98d8508ae971a91c7385b9a0f489f24c835 |
|
MD5 | c6643cf0ceddaa6baf5da62e9e90af5c |
|
BLAKE2b-256 | 63a8bef80f1e0cb4a15483f38ff5cd7e908f6001baa55c8af127691301b3a4cf |