Skip to main content

DETACH (Device Temperature and Acceleration Change) algorithm for detecting non-wear from raw accelerometer data.

Project description

vertdetach

DOI

DETACH (Device Temperature and Acceleration Change) algorithm detects non-wear periods for body-worn accelerometers by integrating a ‘rate-of-change’ criterion for temperature into a combined temperature-acceleration algorithm.

Publication

Vert, A., Weber, K. S., Thai, V., Turner, E., Beyer, K. B., Cornish, B. F., Godkin, F. E., Wong, C., McIlroy, W. E., & Van Ooteghem, K. (2022). Detecting accelerometer non-wear periods using change in acceleration combined with rate-of-change in temperature. BMC Medical Research Methodology, 22. https://doi.org/10.1186/s12874-022-01633-6

Using the vertdetach Algorithm

The DETACH algorithm is stored as a function called vertdetach within the /src/vertdetach/vertdetach.py Python file.

The function itself is defined as follows

vertdetach(x_values, y_values, z_values, temperature_values, accel_freq=75,
           temperature_freq=0.25, std_thresh_mg=8.0, low_temperature_cutoff=26, high_temperature_cutoff=30,
           temp_dec_roc=-0.2, temp_inc_roc=0.1, num_axes=2, quiet=False)

Input Arguments

The input arguments and their definitions are listed in the table below:

Argument Data Type Optional (default value) or Required Description
x_values NumPy Array Required x-axis accelerometer values
y_values NumPy Array Required y-axis accelerometer values
z_values NumPy Array Required x-axis accelerometer values
temperature_values NumPy Array Required Temperature values
accel_freq float Optional (75) Frequency of the accelerometer in Hz
temperature_freq float Optional (0.25) Frequency of the temperature in Hz
std_thresh_mg float Optional (8.0) The value which the standard deviation (STD) of an axis in the window must be below to trigger non-wear
low_temperature_cutoff float Optional (26.0) Low temperature threshold for non-wear classification (see paper for more details)
high_temperature_cutoff float Optional (30.0) High temperature threshold for non-wear classification (see paper for more details)
temp_dec_roc float Optional (-0.2) Temperature decrease rate-of-change threshold for non-wear classification (see paper for more details)
temp_inc_roc float Optional (0.1) Temperature increase rate-of-change threshold for non-wear classification (see paper for more details)
num_axes int Optional (2) Number of axes that must be below the STD threshold to be considered non-wear
quiet bool Optional (False) Whether or not to quiet print statements.

Returns

The algorithm returns a tuple with two objects:

  1. start_stop_df: A pandas DataFrame with the start and end datapoints of the non-wear bouts.
  2. vert_nonwear_array: A numpy array with the same length of the accelerometer data marked as either wear (0) or non-wear (1)

Example

Example python code to determine the percentage of non-wear time from

from src.vertdetach.vertdetach import vertdetach
import numpy as np

# Load Data
accelerometer_vals = np.load("path\to\raw\accelerometer.npy")
temperature_values = np.load("path\to\raw\temperature.npy")
x_values = accelerometer_vals[0]
y_values = accelerometer_vals[1]
z_values = accelerometer_vals[2]

# Define Frequencies
accel_freq = 75
temperature_freq = 0.25

# Calculate Non-wear
start_stop_df, nonwear_array = vertdetach(x_values = x_values, y_values = y_values, z_values = z_values, 
                                          temperature_values = temperature_values, accel_freq = accel_freq, 
                                          temperature_freq = temperature_freq)

# Analysis
total_wear_time = np.sum(nonwear_array)
pct_worn = total_wear_time/len(nonwear_array) * 100

print("The device was not worn %s percent of the time" % pct_worn)

Version/Changelog

v1.0.3

  • loosen dependency requirements to minimum version instead of minor version

v1.0.2

Installation

To install the latest release of vertdetach directly from GitHub using pip, run the following line in terminal or console:

pip install git+https://github.com/nimbal/vertdetach

To install a specific release, insert @v#.#.# after the repository name replacing with the tag associated with that release. For example:

pip install git+https://github.com/nimbal/vertdetach@v1.0.0

Include vertdetach as Package Dependency

To include the latest release of vertdetach as a dependency in your Python package, include the following string within the list alongside your other dependencies:

install_requires=['vertdetach@git+https://github.com/nimbal/vertdetach@[version]']

To include a specific release, replace [version] with the tag associated with that release.

vertdetach Package Dependencies

  • numpy
  • pandas
  • scipy

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vertdetach-1.0.2.tar.gz (7.1 kB view details)

Uploaded Source

Built Distribution

vertdetach-1.0.2-py3-none-any.whl (6.8 kB view details)

Uploaded Python 3

File details

Details for the file vertdetach-1.0.2.tar.gz.

File metadata

  • Download URL: vertdetach-1.0.2.tar.gz
  • Upload date:
  • Size: 7.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.0 CPython/3.10.12 Linux/6.2.0-1012-azure

File hashes

Hashes for vertdetach-1.0.2.tar.gz
Algorithm Hash digest
SHA256 27c36de922df815fd4d78bb609120d353c8a0ffd544aa33ae409fdc1ee49b82e
MD5 e048ea376ed28b71b13fd8c720823e5b
BLAKE2b-256 f5d57bf6f4e927592a3ed027bf9f87ce427594bbef3eea8aa43bc1070600ef11

See more details on using hashes here.

File details

Details for the file vertdetach-1.0.2-py3-none-any.whl.

File metadata

  • Download URL: vertdetach-1.0.2-py3-none-any.whl
  • Upload date:
  • Size: 6.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.0 CPython/3.10.12 Linux/6.2.0-1012-azure

File hashes

Hashes for vertdetach-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 0ba6ff276e44cf5b64851940353fb98d8508ae971a91c7385b9a0f489f24c835
MD5 c6643cf0ceddaa6baf5da62e9e90af5c
BLAKE2b-256 63a8bef80f1e0cb4a15483f38ff5cd7e908f6001baa55c8af127691301b3a4cf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page