Skip to main content

Efficient phylogenetic tree inference for massive taxonomic datasets

Project description

VeryFastTree Python Bindings

The VeryFastTree Python Bindings provide an interface to the VeryFastTree software for rapid construction of phylogenetic trees. This package allows you to easily integrate VeryFastTree into your Python workflows, enabling efficient handling of large datasets and quick tree generation.

Installation

To install the VeryFastTree Python Bindings, you can use pip:

pip install veryfasttree

*The Linux version requires the OpenMP library (libgomp) to be installed on the system.

Usage

Here is a basic example of how to use the VeryFastTree Python Bindings:

import veryfasttree

# Define input file
input_alignment = 'path/to/your/alignment.fasta'

# Run VeryFastTree
tree = veryfasttree.run(input_alignment, gtr=True, nt=True)

print(tree)

The input to the function can be a file or a text string containing the aligned sequences. The other function arguments are the same as the VeryFastTree command-line arguments, omitting the hyphens (-). Flags should be specified with the value True.

VeryFastTree can also be called using the command line interface provided by the Python module:

python3 -m veryfasttree [arguments]

The command-line arguments follow the same convention as the VeryFastTree.

Contributing

Contributions are welcome! Please submit pull requests or issues on the GitHub repository.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

veryfasttree-4.0.4.1.tar.gz (3.4 MB view details)

Uploaded Source

Built Distributions

veryfasttree-4.0.4.1-py38-none-win_amd64.whl (3.4 MB view details)

Uploaded Python 3.8 Windows x86-64

veryfasttree-4.0.4.1-py38-none-musllinux_1_2_x86_64.whl (5.8 MB view details)

Uploaded Python 3.8 musllinux: musl 1.2+ x86-64

veryfasttree-4.0.4.1-py38-none-musllinux_1_2_ppc64le.whl (984.3 kB view details)

Uploaded Python 3.8 musllinux: musl 1.2+ ppc64le

veryfasttree-4.0.4.1-py38-none-musllinux_1_2_aarch64.whl (815.6 kB view details)

Uploaded Python 3.8 musllinux: musl 1.2+ ARM64

veryfasttree-4.0.4.1-py38-none-manylinux_2_17_x86_64.whl (5.8 MB view details)

Uploaded Python 3.8 manylinux: glibc 2.17+ x86-64

veryfasttree-4.0.4.1-py38-none-manylinux_2_17_ppc64le.whl (974.2 kB view details)

Uploaded Python 3.8 manylinux: glibc 2.17+ ppc64le

veryfasttree-4.0.4.1-py38-none-manylinux_2_17_aarch64.whl (845.2 kB view details)

Uploaded Python 3.8 manylinux: glibc 2.17+ ARM64

veryfasttree-4.0.4.1-py38-none-macosx_13_0_x86_64.whl (6.1 MB view details)

Uploaded Python 3.8 macOS 13.0+ x86-64

File details

Details for the file veryfasttree-4.0.4.1.tar.gz.

File metadata

  • Download URL: veryfasttree-4.0.4.1.tar.gz
  • Upload date:
  • Size: 3.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.4 Windows/11

File hashes

Hashes for veryfasttree-4.0.4.1.tar.gz
Algorithm Hash digest
SHA256 3f6df5412d247565eefae018b5db398716a5296b1b36021507958a2fed965603
MD5 213fdca30ca2a5d495ecc0ef2874ea03
BLAKE2b-256 9af6d8d28239b9723623bd14a080bce981ccd4e57a7ba1c05ce05042ab42b633

See more details on using hashes here.

File details

Details for the file veryfasttree-4.0.4.1-py38-none-win_amd64.whl.

File metadata

File hashes

Hashes for veryfasttree-4.0.4.1-py38-none-win_amd64.whl
Algorithm Hash digest
SHA256 f9b1fb7d80106db8fb84cf572d72ac75aa9312dc750ba379245ee82b800af380
MD5 ef4191ab8a486f60ed2072dcdae1db06
BLAKE2b-256 827c4fa400e8377aa2171b4c435c4f969b514a6c78697d733d455896bd609bc5

See more details on using hashes here.

File details

Details for the file veryfasttree-4.0.4.1-py38-none-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for veryfasttree-4.0.4.1-py38-none-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7f44657f74e10c22af8617d155b2c18338e9c40c981d3f3519e7b6aa6f5ff6d1
MD5 6d05b6e58aaccc891c0ef2e9fa07452f
BLAKE2b-256 7a863042da9c89b2556151eb71f5f6f4fabb92f258eedc22828621368ee8c2d5

See more details on using hashes here.

File details

Details for the file veryfasttree-4.0.4.1-py38-none-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for veryfasttree-4.0.4.1-py38-none-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 aa3c7896a23981b2d8c6d7ba308c8831e96cdd7ecec432422ea59327dc89ead7
MD5 9f7af25a472f60414950d1cfa47fd000
BLAKE2b-256 7c41d441bd02b55b06698d60e774877ba8b5d6546c1007a0a79809fe83d836c9

See more details on using hashes here.

File details

Details for the file veryfasttree-4.0.4.1-py38-none-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for veryfasttree-4.0.4.1-py38-none-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 a72cce29932047919e30e40880250c2a6c2d0633bbe361df91c57511c800d338
MD5 67fb9e4089b000af8a0e70a01fd7bb3a
BLAKE2b-256 7f4f0325bba38e5a64fa3c304944e6bbcf785277ccba26bf5d92498a24e6b0f8

See more details on using hashes here.

File details

Details for the file veryfasttree-4.0.4.1-py38-none-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for veryfasttree-4.0.4.1-py38-none-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 78d40f3c2c5ea1c1b0cabeb8b58d1f4c996456d616c8c68bc833991025d6e748
MD5 72778fe15b20133f1abc4d97a58af523
BLAKE2b-256 a5f0bf4577a1da0b9b26d05e6a0e63ba463474ae0920a3aed7b87647e91fafe4

See more details on using hashes here.

File details

Details for the file veryfasttree-4.0.4.1-py38-none-manylinux_2_17_ppc64le.whl.

File metadata

File hashes

Hashes for veryfasttree-4.0.4.1-py38-none-manylinux_2_17_ppc64le.whl
Algorithm Hash digest
SHA256 0cd0766c2f8e0ec23463737a5cd4f166bd124cbdd9a7937875a58e997686e0c8
MD5 4df667e15c74b6d9234e0e11574792ef
BLAKE2b-256 d5c23e4ca5f369830edf0164129ce76267860fbf7169bd2e8a984cbfce302aa0

See more details on using hashes here.

File details

Details for the file veryfasttree-4.0.4.1-py38-none-manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for veryfasttree-4.0.4.1-py38-none-manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 028119be10b3ba0d872473b5f8e5ac65bd81ba4b401f4b82cd404c474d1c97f3
MD5 8b5fd5b56e580492f390816e0fd36575
BLAKE2b-256 e7515a73965f8e03727f4af92374e3421aefb232bd387f3f8d546199e0ffcff0

See more details on using hashes here.

File details

Details for the file veryfasttree-4.0.4.1-py38-none-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for veryfasttree-4.0.4.1-py38-none-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 f192c625c063d57cca0651b23ecc45fcd83f259d6ceb95c07d0693de93b0b7f5
MD5 0001f9a07899fd7bb230f864e68fd4cf
BLAKE2b-256 605b40f3ad76cfe2515ab26a0e8c33f6fec6e75be6014f1d6e22c74ebb8733f4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page