Skip to main content

Vgrid - All in One Global Geocoding Systems

Project description

Vgrid - All in One Global Geocoding Systems

Installation:

  • Using pip:

    pip install vgrid --upgrade
    
  • Visit vgrid on PyPI

Usage - Python:

Import vgrid, initialize Latitude and Longitude for testing:

from vgrid.geocode import olc, mgrs, geohash, georef, s2, h3, maidenhead, gars 
import h3, json
from vgrid.geocode.gars import GARSGrid
from vgrid.geocode.s2 import LatLng, CellId
from vgrid.geocode.geocode2geojson import *

latitude, longitude = 10.775275567242561, 106.70679737574993
print(f'Latitude, Longitude: ({latitude}, {longitude})')

OLC

print('\OLC:')
olc_precision = 11 #[10-->15]
olc_code = olc.encode(latitude, longitude, olc_precision)
olc_decode = olc.decode(olc_code)
print(f'OLC at precision = {olc_precision}: {olc_code}')
print(f'Decode {olc_code} to center and cell in WGS84 = {olc_decode}')

data = olc2geojson(olc_code)
output_file = f'olc{olc_precision}.geojson'
with open(output_file, 'w') as f:
    json.dump(data, f, indent=2)  # 'indent' makes the JSON output more readable
print(f'GeoJSON written to {output_file}')

MGRS

print('\nMGRS:')
mgrs_precision = 4 # [0 -->5]
mgrs_code = mgrs.toMgrs(latitude, longitude, mgrs_precision)
mgrs_code_to_wgs = mgrs.toWgs(mgrs_code)
print(f'MGRS Code at precision = {mgrs_precision}: {mgrs_code}')
print(f'Convert {mgrs_code} to WGS84 = {mgrs_code_to_wgs}')

data = mgrs2geojson(mgrs_code)
output_file = f'mgrs{mgrs_precision}.geojson'
with open(output_file, 'w') as f:
    json.dump(data, f, indent=2)  # 'indent' makes the JSON output more readable
print(f'GeoJSON written to {output_file}')

Geohash

print('\Geohsash:')
geohash_precision = 9 # [1-->30]
geohash_code = geohash.encode(latitude, longitude, geohash_precision)
geohash_decode = geohash.decode(geohash_code, True)
print(f'Geohash Code at precision = {geohash_precision}: {geohash_code}')
print(f'Decode {geohash_code} to WGS84 = {geohash_decode}')

data = geohash2geojson(geohash_code)
output_file = f'geohash{geohash_precision}.geojson'
with open(output_file, 'w') as f:
    json.dump(data, f, indent=2)  
print(f'GeoJSON written to {output_file}')

GEOREF

print('\GEOREF:')
georef_precision = 4 # [0 -->10]
georef_code = georef.encode(latitude, longitude, georef_precision)
georef_decode = georef.decode(georef_code, True)
print(f'latitude, longitude = {latitude},{longitude}')

print(f'GEOREF Code at precision = {georef_precision}: {georef_code}')
print(f'Decode {georef_code} to WGS84 = {georef_decode}')

data = georef2geojson(georef_code)
output_file = f'georef{georef_precision}.geojson'
with open(output_file, 'w') as f:
    json.dump(data, f, indent=2)  # 'indent' makes the JSON output more readable
print(f'GeoJSON written to {output_file}')

S2

print('\S2:')
s2_precision = 21 #[0 -->30]
lat_lng = LatLng.from_degrees(latitude, longitude)
cell_id = CellId.from_lat_lng(lat_lng)
cell_id = cell_id.parent(s2_precision)
cell_id_token= CellId.to_token(cell_id)
print(cell_id_token)

data = s22geojson(cell_id_token)
output_file = f's2_{s2_precision}.geojson'
with open(output_file, 'w') as f:
    json.dump(data, f, indent=2)  # 'indent' makes the JSON output more readable
print(f'GeoJSON written to {output_file}')

H3

print('\H3:')
h3_precision = 13 #[0-->15]
h3_code = h3.latlng_to_cell(latitude, longitude, h3_precision)
h3_decode = h3.cell_to_latlng(h3_code)

print(f'latitude, longitude = {latitude},{longitude}')
print(f'H3 code at precision = {h3_precision}: {h3_code}')
print(f'Decode {h3_code} to WGS84 = {h3_decode}')

data = h32geojson(h3_code)
output_file = f'h3_{h3_precision}.geojson'
with open(output_file, 'w') as f:
    json.dump(data, f, indent=2)  # 'indent' makes the JSON output more readable
print(f'GeoJSON written to {output_file}')

Maidenhead

print('\nMaidenhead:')
maidenhead_precision = 4 #[1-->4]
maidenhead_code = maidenhead.toMaiden(latitude, longitude, maidenhead_precision)
maidenGrid = maidenhead.maidenGrid(maidenhead_code)
print(f'Maidenhead Code at precision = {maidenhead_precision}: {maidenhead_code}')
print(f'Convert {maidenhead_code} to center and cell in WGS84 = {maidenGrid}')

data = maidenhead2geojson(maidenhead_code)
output_file = f'maidenhead_{maidenhead_precision}.geojson'
with open(output_file, 'w') as f:
    json.dump(data, f, indent=2)  # 'indent' makes the JSON output more readable
print(f'GeoJSON written to {output_file}')

GARS

print('\nGARS:')
gars_precision = 1 # 1, 5, 15, 30 minutes
gars_grid = GARSGrid.from_latlon(latitude, longitude, gars_precision)
gars_code = gars_grid.gars_id
print(gars_code)

data = gars2geojson(gars_code)
output_file = f'gars_{gars_precision}.geojson'
with open(output_file, 'w') as f:
    json.dump(data, f, indent=2)  
print(f'GeoJSON written to {output_file}')

Usage - CLI:

OLC

> olc2geojson 7P28QPG4+4P7

MGRS

> mgrs2geojson 34TGK56063228

Geohash

> geohash2geojson w3gvk1td8

GEOREF

> georef2geojson VGBL42404651

S2

> s22geojson 31752f45cc94 

H3

> h32geojson 8d65b56628e46bf 

Maidenhead

> maidenhead2geojson OK30is46 

GARS

> gars2geojson 574JK1918

Command line for creating geocoding grids in shapefile format

> geohashgrid -p 1 -o geohash_1.shp (p = [1..12])
> maidenheadgrid -p 1 -o maidenhead_1.shp (p = [1, 2, 3, 4])
> olcgrid -p 1 -o olc_1.shp (p = [2,4,8])
> gzd -o gzd.shp (Create Grid Zone Designators - used by MGRS)
> mgrsgrid -o mgrs_32648.shp -cellsize 100000 -epsg 32648 (Create MGRS Grid with cell size 100km x 100km at UTM zone 48N)  

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vgrid-1.1.5.tar.gz (117.5 kB view details)

Uploaded Source

Built Distribution

vgrid-1.1.5-py3-none-any.whl (131.1 kB view details)

Uploaded Python 3

File details

Details for the file vgrid-1.1.5.tar.gz.

File metadata

  • Download URL: vgrid-1.1.5.tar.gz
  • Upload date:
  • Size: 117.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.9

File hashes

Hashes for vgrid-1.1.5.tar.gz
Algorithm Hash digest
SHA256 7ee7db9683d1c796c5d5a2ecbae3532236c624f427a320bb38436a44c7c1a35d
MD5 f6d4c6bf364d6cf2fce1800d7c8bc25b
BLAKE2b-256 38f37c89fd05446e3eb43039da2b96c8f2261fc88181ff175b9e64b1d4fdb19c

See more details on using hashes here.

File details

Details for the file vgrid-1.1.5-py3-none-any.whl.

File metadata

  • Download URL: vgrid-1.1.5-py3-none-any.whl
  • Upload date:
  • Size: 131.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.9

File hashes

Hashes for vgrid-1.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 8f60fe83939ceb71d995afdf2b4e19d58a874ade653258aedea45b29ad5289bf
MD5 f79d9be1a430a8d9797f12333d4044be
BLAKE2b-256 4c9076f8a629c997964befe78d55cc2fd380c8cefd7c57642068d3d967184af1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page