Skip to main content

VGSLify is a Python toolkit designed for rapid prototyping and seamless conversion between TensorFlow models and the Variable-size Graph Specification Language (VGSL). Drawing inspiration from Tesseract's VGSL specs, VGSLify introduces enhancements and provides a streamlined approach to define, train, and interpret deep learning models using VGSL.

Project description

VGSLify: Variable-size Graph Specification for TensorFlow & PyTorch

PyPI Downloads License

VGSLify simplifies defining, training, and interpreting deep learning models using the Variable-size Graph Specification Language (VGSL). Inspired by Tesseract's VGSL specs, VGSLify enhances and streamlines the process for both TensorFlow and PyTorch.

Table of Contents

Installation

pip install vgslify

Install your chosen backend:

# For TensorFlow
pip install tensorflow

# For PyTorch
pip install torch

Verify installation:

python -c "import vgslify; print(vgslify.__version__)"

How VGSL Works

VGSL uses concise strings to define model architectures. For example:

None,None,64,1 Cr3,3,32 Mp2,2 Cr3,3,64 Mp2,2 Rc3 Fr64 D20 Lrs128 D20 Lrs64 D20 Fs92

Each part represents a layer: input, convolution, pooling, reshaping, fully connected, LSTM, and output. VGSL allows specifying activation functions for customization.

Quick Start

Generating a Model with VGSLify

from vgslify.generator import VGSLModelGenerator

# Define the VGSL specification
vgsl_spec = "None,None,64,1 Cr3,3,32 Mp2,2 Fs92"

# Choose backend: "tensorflow", "torch", or "auto" (defaults to whichever is available)
vgsl_gn = VGSLModelGenerator(backend="tensorflow") 
model = vgsl_gn.generate_model(vgsl_spec, model_name="MyModel")
model.summary()


vgsl_gn = VGSLModelGenerator(backend="torch") # Switch to PyTorch
model = vgsl_gn.generate_model(vgsl_spec, model_name="MyTorchModel")
print(model)

Creating Individual Layers with VGSLify

from vgslify.generator import VGSLModelGenerator

vgsl_gn = VGSLModelGenerator(backend="tensorflow")
conv2d_layer = vgsl_gn.construct_layer("Cr3,3,64")

# Integrate into an existing model:
# model = tf.keras.Sequential()
# model.add(conv2d_layer) # ...


# Example with generate_history:
history = vgsl_gn.generate_history("None,None,64,1 Cr3,3,32 Mp2,2 Fs92")
for layer in history:
    print(layer)

Converting Models to VGSL

from vgslify.utils import model_to_spec
import tensorflow as tf
# Or import torch.nn as nn

# TensorFlow example:
model = tf.keras.models.load_model("path_to_your_model.keras") # If loading from file

# PyTorch example:
# model = MyPyTorchModel() # Assuming MyPyTorchModel is defined elsewhere


vgsl_spec_string = model_to_spec(model)
print(vgsl_spec_string)

Note: Flatten/Reshape layers might require manual input shape adjustment in the generated VGSL.

Additional Documentation

See the VGSL Documentation for more details on supported layers and their specifications.

Contributing

Contributions are welcome! Fork the repository, set up your environment, make changes, and submit a pull request. Create issues for bugs or suggestions.

License

MIT License. See LICENSE file.

Acknowledgements

Thanks to the creators and contributors of the original VGSL specification.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vgslify-0.13.2.tar.gz (23.8 kB view details)

Uploaded Source

Built Distribution

vgslify-0.13.2-py3-none-any.whl (29.4 kB view details)

Uploaded Python 3

File details

Details for the file vgslify-0.13.2.tar.gz.

File metadata

  • Download URL: vgslify-0.13.2.tar.gz
  • Upload date:
  • Size: 23.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for vgslify-0.13.2.tar.gz
Algorithm Hash digest
SHA256 d927e42969856e8739dc70906887985e2303d6480e7823f6dc7682146374f69a
MD5 a01860c27e7325391b55d6b6dfb9430c
BLAKE2b-256 e53f58e42e3973fc5a9adaa736c14f57042e31b7c8f817504bb60d6fa42fbc89

See more details on using hashes here.

File details

Details for the file vgslify-0.13.2-py3-none-any.whl.

File metadata

  • Download URL: vgslify-0.13.2-py3-none-any.whl
  • Upload date:
  • Size: 29.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for vgslify-0.13.2-py3-none-any.whl
Algorithm Hash digest
SHA256 1062fb36ab3ff8579286334caf2e22428f2ed05f3f35a1689ddb8168778c2bf0
MD5 5a32fdcc548ced14de6a2c11edc72784
BLAKE2b-256 1890e6fa1584cfe33f97a64fb2fcd87a5fbf222b6f7071d9d163f28ea9424f63

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page