Skip to main content

Shot Type Classification Package

Project description

Plugin package: Shot Type Classification

This package includes all methods to classify a given shot/or image sequence in one of the categories Extreme Long Shot (ELS), Long Shot (LS), Medium Shot (MS) or Close-Up Shot (CU).

Package Description

PDF format: vhh_stc_pdf

HTML format (only usable if repository is available in local storage): vhh_stc_html

Quick Setup

This package includes a script and a requirements.txt file which are needed to install this package for custom applications. The following instructions have to be done to used this library in your own application:


  • Ubuntu 18.04 LTS
  • CUDA 10.1 + cuDNN
  • python version 3.6.x

0 Environment Setup (optional)

Create a virtual environment:

  • create a folder to a specified path (e.g. /xxx/vhh_stc/)
  • python3 -m venv /xxx/vhh_stc/

Activate the environment:

  • source /xxx/vhh_stc/bin/activate

1A Install using Pip

The VHH Shot Boundary Detection package is available on PyPI and can be installed via pip.

  • Update pip and setuptools (tested using pip==20.2.3 and setuptools==50.3.0)
  • pip install vhh-stc

Alternatively, you can also build the package from source.

1B Install by building from Source

Checkout vhh_stc repository to a specified folder:

Install the stc package and all dependencies:

  • Update pip and setuptools (tested using pip==20.2.3 and setuptools==50.3.0)
  • Install the wheel package: pip install wheel
  • change to the root directory of the repository (includes
  • python bdist_wheel
  • The aforementioned command should create a /dist directory containing a wheel. Install the package using python -m pip install dist/xxx.whl

NOTE: You can check the success of the installation by using the commend pip list. This command should give you a list with all installed python packages and it should include vhh-stc.

2 Install PyTorch

Install a Version of PyTorch depending on your setup. Consult the PyTorch website for detailed instructions.

3 Setup environment variables (optional)

  • source /data/dhelm/python_virtenv/vhh_sbd_env/bin/activate
  • export PYTHONPATH=$PYTHONPATH:/XXX/vhh_stc/:/XXX/vhh_stc/Develop/:/XXX/vhh_stc/Demo/

4 Run demo script (optional)

  • change to root directory of the repository
  • python Demo/

Release Generation

  • Create and checkout release branch: (e.g. v1.1.0): git checkout -b v1.1.0
  • Update version number in
  • Update Sphinx documentation and release version
  • Make sure that pip and setuptools are up to date
  • Install wheel and twine
  • Build Source Archive and Built Distribution using python sdist bdist_wheel
  • Upload package to PyPI using twine upload dist/*

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vhh_stc-1.2.2.tar.gz (11.6 kB view hashes)

Uploaded Source

Built Distribution

vhh_stc-1.2.2-py3-none-any.whl (26.9 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page