Estimate cell state dynamics with fluctuation
Project description
vicdyf: Variational Inference of Cell state Dynamics with fluctuation
vicdyf is intended to estimated cell state dynamics with fluctuation from spliced and unspliced transcript abundance.
Instalation
You can install vicdyf using pip command from your shell.
pip install vicdyf
Usage
You need to prepare an AnnData
object which includes raw spliced and unspliced counts as layers
named as spliced
and unspliced
like a scvelo data set. Apply vicdyf
workflow on the object:
import vicdyf
adata = vicdyf.workflow.estimate_dynamics(adata)
vicdyf.workflow.estimate_dynamics
have optional parameters as below:
use_genes
: gene names for dynamics estimation (default:None
)first_epoch
: number of epochs for deriving latent representation (default:500
)second_epoch
: number of epochs for optimizing dynamics (default:500
)param_path
: a path where the optimized parameters ofvicdyf.modules.VicDyf
are stored (default:.vicdyf_opt_pt
)lr
: Learning rate for Adam optimizer of pytorchbatch_size
: Size of mini batches in the optimization procedurenum_workers
: Number of workers in data loader of pytorchval_ratio
: proportion of validation data settest_ratio
: proportion of test data setmodel_params
: a dictionary which describe the configuration ofvicdyf.modules.VicDyf
. The keys of the dictionary is as below:z_dim
: dimension of latent representation (default10
)enc_z_h_dim
: dimension of hidden units in encoder layers (default50
)enc_d_h_dim
: dimension of hidden units in dynamics encoder layers (default50
)dec_z_h_dim
: dimension of hidden units in encoder layers (default50
)num_enc_z_layers
: the layer number of the encoder (default2
)num_enc_z_layers
: the layer number of the dynamics encoder (default2
)num_dec_z_layers
: the layer number of the decoder (default2
)
Here, the AnnData
object acuires sevral elements in layers
, obsm
, obsp
and obs
.
layers
:vicdyf_expression
: Expected gene expression levelvicdyf_mean_velocity
: Expected gene expression changevicdyf_velocity
: Stochasticaly sampled gene expression changevicdyf_fluctuation
: Fluctuation level for each gene
obsm
:X_vicdyf_z
: Stochasticaly smapled latent representationX_vicdyf_zl
: Expected latent representationX_vicdyf_d
: Stochasticaly smapled changes of latent representationX_vicdyf_dl
: Expected changes of latent representationX_vicdyf_umap
: 2D UMAP embeddings of expected latent representation for visualizationX_vicdyf_sdumap
: 2D UMAP embeddings ofX_vicdyf_d
for visualizationX_vicdyf_mdumap
: 2D UMAP embeddings ofX_vicdyf_dl
for visualization
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file vicdyf-tiisaishima-0.0.1.tar.gz
.
File metadata
- Download URL: vicdyf-tiisaishima-0.0.1.tar.gz
- Upload date:
- Size: 9.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e2feaa31497d79665a6cccb09206a6ae1c869ca099d37166a9b10ebf8435e514 |
|
MD5 | e714105ac8238dcebf6a4ab1f6a1562e |
|
BLAKE2b-256 | 1e2db5af8c9598523a2b593f41ecd56b6316eb5fef85782ac66d9e94f12cc54d |
File details
Details for the file vicdyf_tiisaishima-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: vicdyf_tiisaishima-0.0.1-py3-none-any.whl
- Upload date:
- Size: 9.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0f03473e5876c3179bd6078fff927ab93a8b6b851121b38f682b1e561f170be0 |
|
MD5 | c3e2107e1e0eb1e02f24b896ed5f4ba5 |
|
BLAKE2b-256 | 1cf1c2de28985ddb19e12e5cd7349dff63acadad65b75e649edd50540686d183 |