Skip to main content

Estimate cell state dynamics with fluctuation

Project description

vicdyf: Variational Inference of Cell state Dynamics with fluctuation

vicdyf is intended to estimated cell state dynamics with fluctuation from spliced and unspliced transcript abundance.

Instalation

You can install vicdyf using pip command from your shell.

pip install vicdyf

Usage

You need to prepare an AnnData object which includes raw spliced and unspliced counts as layers named as spliced and unspliced like a scvelo data set. Apply vicdyf workflow on the object:

import vicdyf
adata = vicdyf.workflow.estimate_dynamics(adata)

vicdyf.workflow.estimate_dynamics have optional parameters as below:

  • use_genes: gene names for dynamics estimation (default: None)
  • first_epoch: number of epochs for deriving latent representation (default: 500)
  • second_epoch: number of epochs for optimizing dynamics (default: 500)
  • param_path: a path where the optimized parameters of vicdyf.modules.VicDyfare stored (default: .vicdyf_opt_pt)
  • lr: Learning rate for Adam optimizer of pytorch
  • batch_size: Size of mini batches in the optimization procedure
  • num_workers: Number of workers in data loader of pytorch
  • val_ratio: proportion of validation data set
  • test_ratio: proportion of test data set
  • model_params: a dictionary which describe the configuration of vicdyf.modules.VicDyf. The keys of the dictionary is as below:
    • z_dim: dimension of latent representation (default 10)
    • enc_z_h_dim: dimension of hidden units in encoder layers (default 50)
    • enc_d_h_dim: dimension of hidden units in dynamics encoder layers (default 50)
    • dec_z_h_dim: dimension of hidden units in encoder layers (default 50)
    • num_enc_z_layers: the layer number of the encoder (default 2)
    • num_enc_z_layers: the layer number of the dynamics encoder (default 2)
    • num_dec_z_layers: the layer number of the decoder (default 2)

Here, the AnnData object acuires sevral elements in layers, obsm, obsp and obs.

  • layers:
    • vicdyf_expression: Expected gene expression level
    • vicdyf_mean_velocity: Expected gene expression change
    • vicdyf_velocity: Stochasticaly sampled gene expression change
    • vicdyf_fluctuation: Fluctuation level for each gene
  • obsm:
    • X_vicdyf_z: Stochasticaly smapled latent representation
    • X_vicdyf_zl: Expected latent representation
    • X_vicdyf_d: Stochasticaly smapled changes of latent representation
    • X_vicdyf_dl: Expected changes of latent representation
    • X_vicdyf_umap: 2D UMAP embeddings of expected latent representation for visualization
    • X_vicdyf_sdumap: 2D UMAP embeddings of X_vicdyf_d for visualization
    • X_vicdyf_mdumap: 2D UMAP embeddings of X_vicdyf_dl for visualization

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vicdyf-tiisaishima-0.0.1.tar.gz (9.0 kB view details)

Uploaded Source

Built Distribution

vicdyf_tiisaishima-0.0.1-py3-none-any.whl (9.6 kB view details)

Uploaded Python 3

File details

Details for the file vicdyf-tiisaishima-0.0.1.tar.gz.

File metadata

  • Download URL: vicdyf-tiisaishima-0.0.1.tar.gz
  • Upload date:
  • Size: 9.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for vicdyf-tiisaishima-0.0.1.tar.gz
Algorithm Hash digest
SHA256 e2feaa31497d79665a6cccb09206a6ae1c869ca099d37166a9b10ebf8435e514
MD5 e714105ac8238dcebf6a4ab1f6a1562e
BLAKE2b-256 1e2db5af8c9598523a2b593f41ecd56b6316eb5fef85782ac66d9e94f12cc54d

See more details on using hashes here.

File details

Details for the file vicdyf_tiisaishima-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: vicdyf_tiisaishima-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 9.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for vicdyf_tiisaishima-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 0f03473e5876c3179bd6078fff927ab93a8b6b851121b38f682b1e561f170be0
MD5 c3e2107e1e0eb1e02f24b896ed5f4ba5
BLAKE2b-256 1cf1c2de28985ddb19e12e5cd7349dff63acadad65b75e649edd50540686d183

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page